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Problem: Depth Compression of CNN

Existing methods in reducing depth of the CNN usually follows one of two
approaches:

» Pruning Convolution Layers: Eliminates less important convolution
layers.

» Pruning Activation Layers and Merging Layers: Eliminates
redundant activation layers and merges resulting consecutive
convolution layers.



Problem: Depth Compression of CNN

» Pruning Convolution Layers: Eliminates less important convolution
layers.

— Aggressively removes parameters, risking loss of important
information.



Problem: Depth Compression of CNN

» Pruning Activation Layers and Merging Layers: Eliminates
redundant activation layers and merges resulting consecutive
convolution layers.

— Kernel size of the merged layer increases as layers are merged,
negating speedup gains.
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Figure: An illustration of the increase in kernel size undermining the latency
reduction when merging layers in CNN.



Proposed Method: Goal

LayerMerge: Jointly prunes convolution and activation layers and merges
resulting consecutive convolution layers at the test time.

— Have the best of both worlds!

Existing depth compression work
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Proposed Method: Goal

Optimize two sets of layer indices:
> A : Where we keep the original activation layers.
» C': Where we keep the original convolution layers.
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Challenge: The selection problem is NP-Hard!



Proposed Method: Surrogate Optimization Problem

Simplify terms:
» max Perf OL (cayo feo0) ) = Sum of importance values of
2 1 \daio fou

merged layers.

A
> T < O‘ | (Ua,- o f§Y)> ~ Sum of latency values of merged layers.
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Importance of the merged layers: Change in performance after replacing
the corresponding part of the original network with the merged layer.



Proposed Method: Surrogate Optimization Problem

Key observation: C' only affects the latency of a merged layer via the
kernel size k.

Proposed approach: Construct look up tables with entries I[i, j, k] and
Tli, j,k]. Choose C with largest ¢1-norm among those resulting in the
same merged kernel size k.
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where K;; is the set of possible merged kernel sizes that can appear after
merging from the (i + 1)-th layer to the j-th layer.



Proposed Method: Surrogate Optimization Problem
Surrogate problem can be solved exactly using a dynamic programming
algorithm in O(L%Kj), where K is the sum of the kernel sizes.

DP recurrence: The maximum objective over the first I € [L] layers with
latency budget t € {TO 2T° .., To} is given by

Mt =  max MU't =T, K]
o<l <1, kEK 1,

Optimal importance sum until I’-layer

+ 1,1, k]

Importance value of the last compressed layer



Experimental Results

(a) ResNet-34 on ImageNet dataset. (b) MobileNetV2-1.0 on ImageNet dataset. (c) MobileNetV2-1.4 on ImageNet dataset.
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(d) DDPM on CIFARI10 dataset. (e) Channel pruned DDPM on CIFAR10 dataset.
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Figure: Pareto curve of each compression method applied to each network.
Latency speed-up is measured on RTX2080 Ti GPU with batch size of 128.



Experimental Results

MobileNetV2-1.0 (Pre-trained), Inference speedup = 1.00x

# Top-5 prediction of previous image with pre-trained network
print_topk_predictions(pretrained_model, ing_tens

Top 1 class | idx: 248 | name: Eskimo dog, husky | probability: 0.5287
Top 2 class | idx: 250 | name: Siberian husky | probability:

0.3235
Top 3 class | idx: 249 | name: malanute, malemute, Alaskan malamute | probability: 0.1283

Compressed (LayerMerge-33%), Inference speedup = 2.50x

# Predictions stay consistent after compression
print_topk_predictions conpressed_model, ing_tensor)
Top 1 class | idx:
Top 2 class | idx:
Input Image Top 3 class | idx:

248 | name: Eskimo dog, husky | probability: 0.5620
250 | name: Siberian husky | probability:

250
249 | name: malanute, malemute, Alaskan malanute | probability: .1128
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Figure: Qualitative results of applying LayerMerge to pre-trained
MobileNetV2-1.0 network on ImageNet and DDPM network on CIFAR10
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Conclusion

» LayerMerge reduces the depth of CNN by jointly pruning
convolution and activation layers to make the network more efficient
while maintaining performance.

» Results show LayerMerge outperforms current methods for reducing
network depth in tasks including image classification and generation.

» https://github.com/snu-mllab/LayerMerge
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https://github.com/snu-mllab/LayerMerge

