

Less is More: on the Over-Globalizing Problem in Graph Transformers

Yujie Xing¹, Xiao Wang^{2†}, Yibo Li¹, Hai Huang¹, Chuan Shi^{1†}

¹ Department of Computer Science, Beijing University of Posts and Telecommunication, Beijing, China.

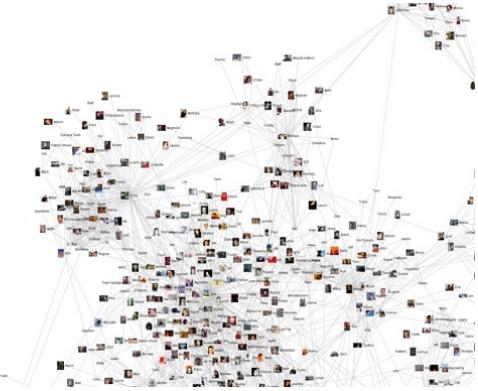
² School of Software, Beihang University, Beijing, China.

ICML 2024 Oral

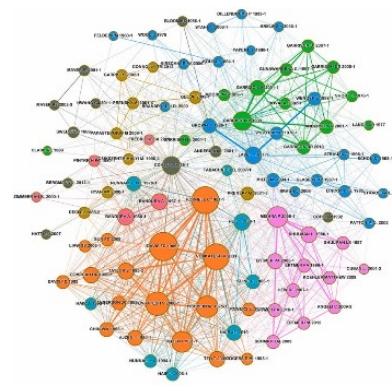
- 1 **Background**
- 2 **Over-Globalizing Problem**
- 3 **Method**
- 4 **Experiments**
- 5 **Conclusions**

1 Background Graph Data

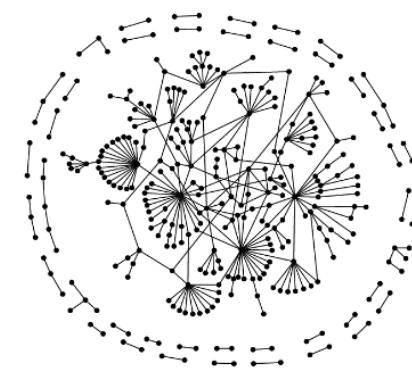
Graph-structured data, an essential and prevalent form in the real world, plays a vital role in modeling object interactions



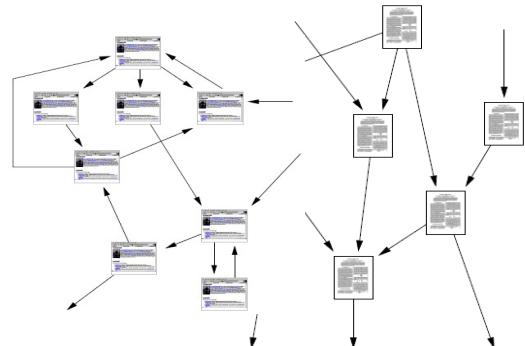
Social networks



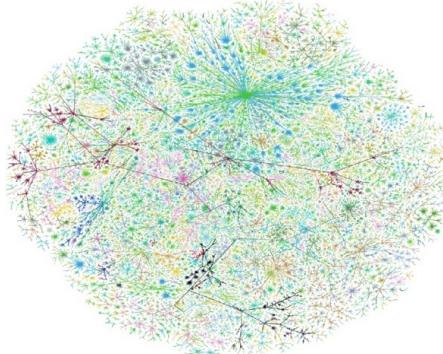
Citation networks



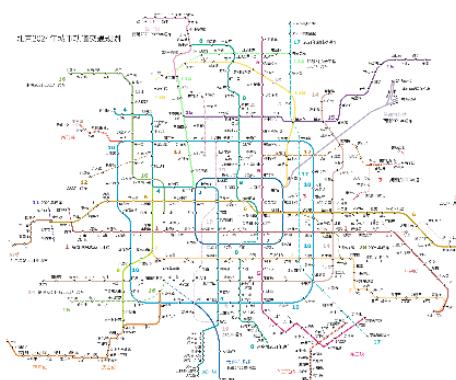
Biomedical networks



Information networks

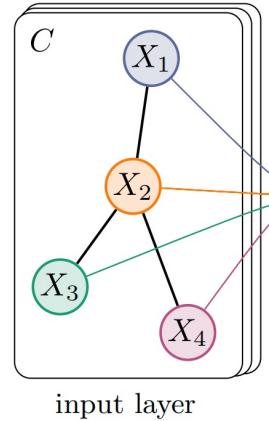


Internet

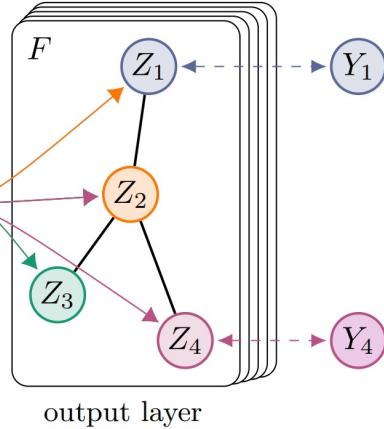
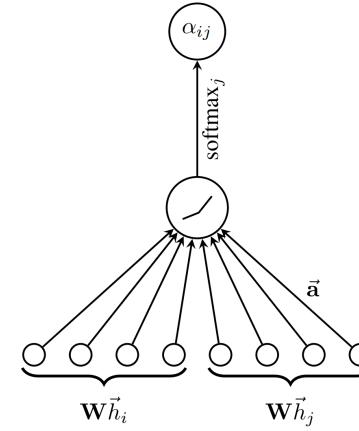


Transport networks

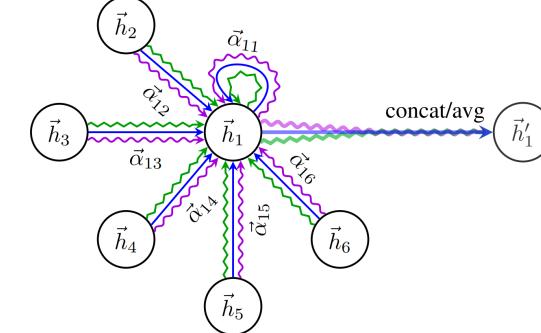
*GNNs effectively utilize their **message-passing** mechanism to extract useful information and learn high-quality representations from graph data.*



Graph Convolutional Networks
(GCN, ICLR 2017)

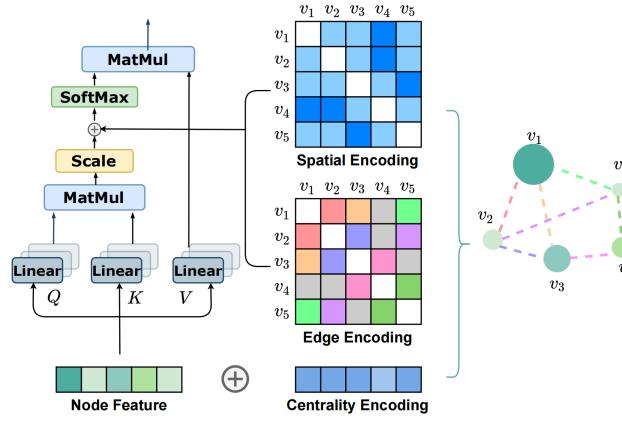
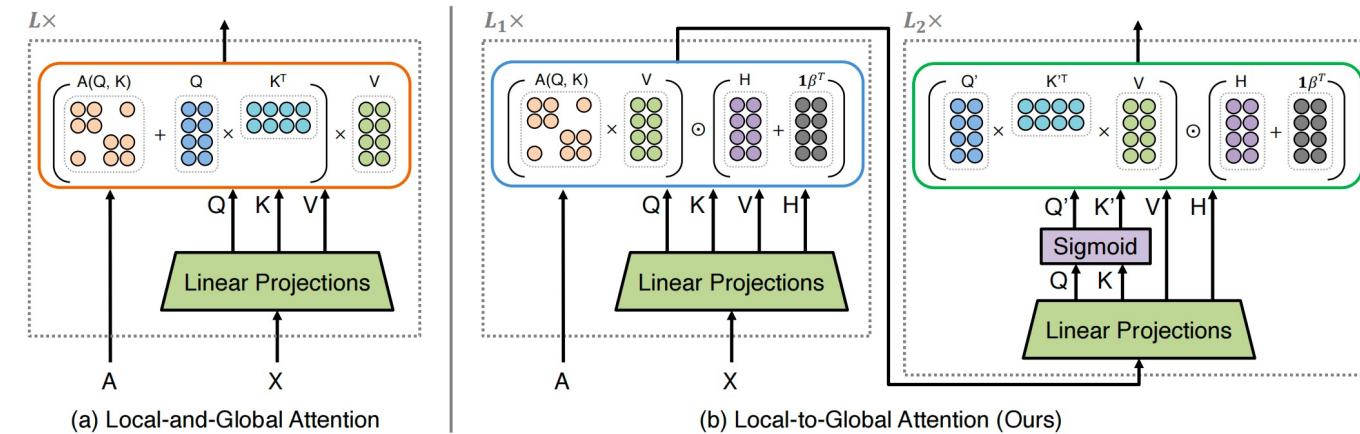


Graph Attention Networks
(GAT, ICLR 2018)



*Unable to stack multi-layers due to **over-smoothing** and **over-squashing**,
resulting in limited receptive fields to near neighbors!!!*

*Graph Transformers construct a fully connected graph and adaptively learn interaction relationships with the powerful **global attention mechanism**.*



Graphormer
(NeurIPS 2021)

Polynormer
(ICLR 2024)

Graph Transformers have achieved remarkable success in graph-level tasks and node-level tasks.

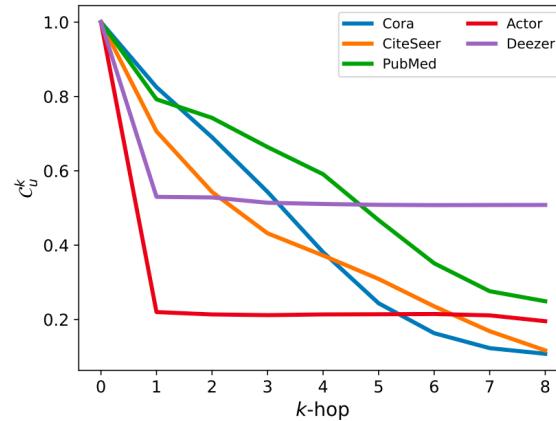
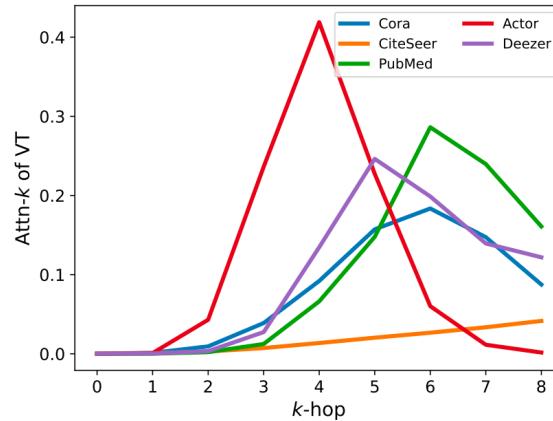
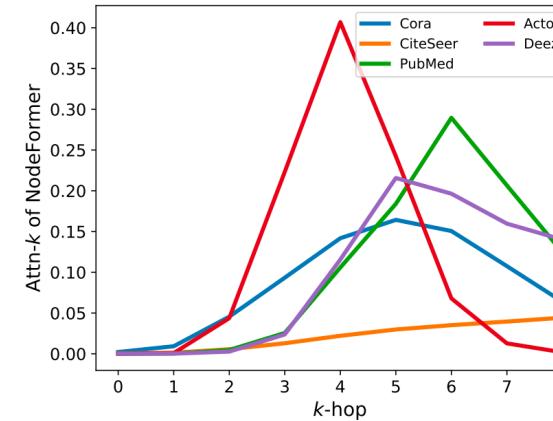
- It is well recognized that the global attention mechanism considers a wider receptive field in a fully connected graph, leading many to believe that useful information can be extracted from all the nodes.
- A key question arises:

*Does the globalizing property always benefit
Graph Transformers?*

- We reveal the *over-globalizing problem* in Graph Transformers by presenting both empirical evidence and theoretical analysis
- We propose a novel Bi-Level Global Graph Transformer with Collaborative Training (CoBFormer), to alleviate the over-globalizing problem while keeping the ability to extract valuable information from distant nodes.

- 1 **Background**
- 2 **Over-Globalizing Problem**
- 3 **Method**
- 4 **Experiments**
- 5 **Conclusions**

We empirically find the **over-globalizing problem** in Graph Transformers.



$$C_u^k = \frac{|v \in \mathcal{N}^k(u) : \mathbf{y}_u = \mathbf{y}_v|}{|\mathcal{N}^k(u)|},$$

The proportion of the k -th hop neighbors sharing the same label with node u

$$\text{Attn-}k = \mathbb{E}_{u \in \mathcal{V}} \sum_{v \in \mathcal{N}^k(u)} \alpha_{uv}.$$

The average attention scores allocated to the k -th hop neighbors

Near nodes usually contain more useful information

Transformers overly focuses on those distant nodes

Theorem 3.1. For a given node u and a well-trained Graph Transformer, let $\eta_u = \mathbb{E}_{v \in \mathcal{V}, \mathbf{y}_u = \mathbf{y}_v} \exp\left(\frac{\mathbf{q}_u \mathbf{k}_v^T}{\sqrt{d}}\right)$, $\gamma_u = \mathbb{E}_{v \in \mathcal{V}, \mathbf{y}_u \neq \mathbf{y}_v} \exp\left(\frac{\mathbf{q}_u \mathbf{k}_v^T}{\sqrt{d}}\right)$. Then, we have:

$$\begin{aligned} \|\mathbf{Z} - \hat{\mathbf{A}}\mathbf{Z}\|_F &\leq \sqrt{2}L \sum_{u \in \mathcal{V}} \sum_{v \in \mathcal{V}, \mathbf{y}_u \neq \mathbf{y}_v} \alpha_{uv} \\ &= \sqrt{2}L \sum_{u \in \mathcal{V}} \frac{1}{1 + \frac{\mathcal{C}_u}{1 - \mathcal{C}_u} \frac{\eta_u}{\gamma_u}}. \end{aligned} \quad (5)$$

where L is a Lipschitz constant.

Theorem 3.2. To analyze the impact of k on \mathcal{C}_u^k , we assume that each node has an equal probability $\frac{1}{|\mathcal{V}|}$ of belonging to any given class. Given the edge homophily $\rho = \frac{|\{(u,v) \in \mathcal{E} : \mathbf{y}_u = \mathbf{y}_v\}|}{|\mathcal{E}|}$, \mathcal{C}_u^k can be recursively defined as:

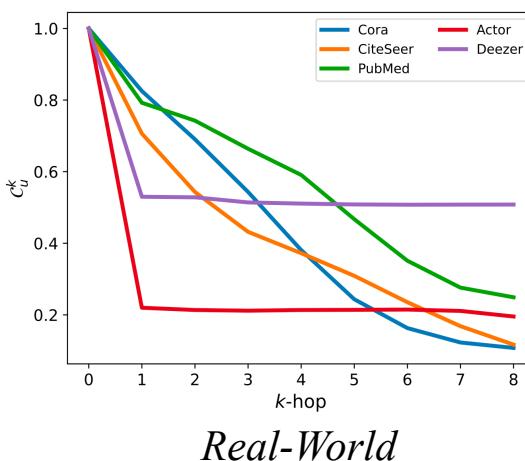
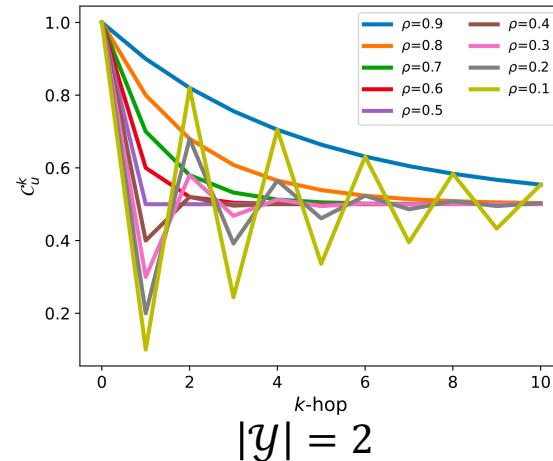
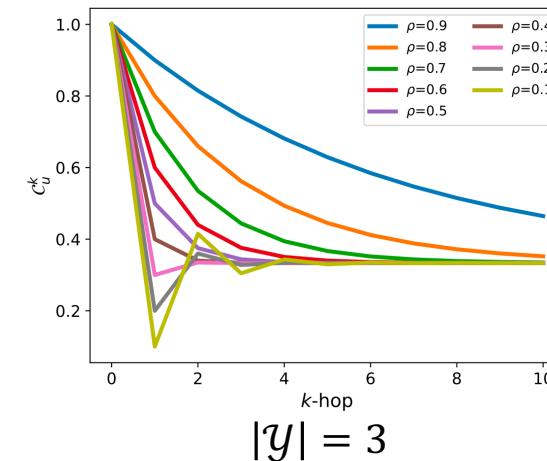
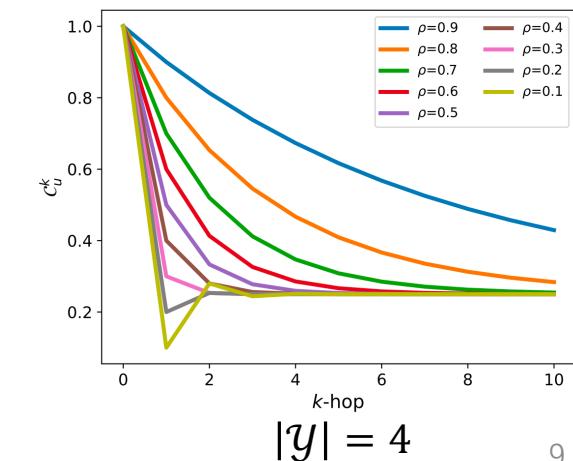
$$\mathcal{C}_u^k = \begin{cases} 1, & \text{if } k = 0 \\ \rho, & \text{if } k = 1 \\ \frac{1 + |\mathcal{Y}| \rho \mathcal{C}_u^{k-1} - \rho - \mathcal{C}_u^{k-1}}{|\mathcal{Y}| - 1}, & \text{if } k = 2, 3, \dots \end{cases} \quad (6)$$

And \mathcal{C}_u^k possesses the following properties:

$$\begin{cases} \mathcal{C}_u^\infty = \frac{1}{|\mathcal{Y}|} \\ \mathcal{C}_u^k \geq \mathcal{C}_u^{k+1}, & \text{if } \rho \geq \frac{1}{|\mathcal{Y}|}, k = 0, 1, \dots \\ \mathcal{C}_u^{2k} > \mathcal{C}_u^{2(k+1)}, & \text{if } \rho < \frac{1}{|\mathcal{Y}|}, k = 0, 1, \dots \\ \mathcal{C}_u^{2k+1} < \mathcal{C}_u^{2(k+1)+1}, & \text{if } \rho < \frac{1}{|\mathcal{Y}|}, k = 0, 1, \dots \end{cases} \quad (7)$$

Theoretical Analysis: An over-expanded receptive field may adversely affect the global attention due to the **over-globalizing problem**.

Our theorem aligns well with the real-world scenarios



Inspired by Theorem 3.1, we define the Attention Signal/Noise Ratio (Attn-SNR) as the metric to quantify the ability of Graph Transformers to distinguish useful nodes as follows:

$$\text{Attn-SNR} = 10 \lg \left(\frac{\sum_{\mathbf{y}_u = \mathbf{y}_v} \alpha_{uv}}{\sum_{\mathbf{y}_u \neq \mathbf{y}_v} \alpha_{uv}} \right).$$

We evaluate the following models using Attn-SNR and Accuracy:

- *VT: Vanilla Transformer*
- *NF: NodeFormer*
- *VT-D: VT but double the attention scores between nodes sharing the same label*

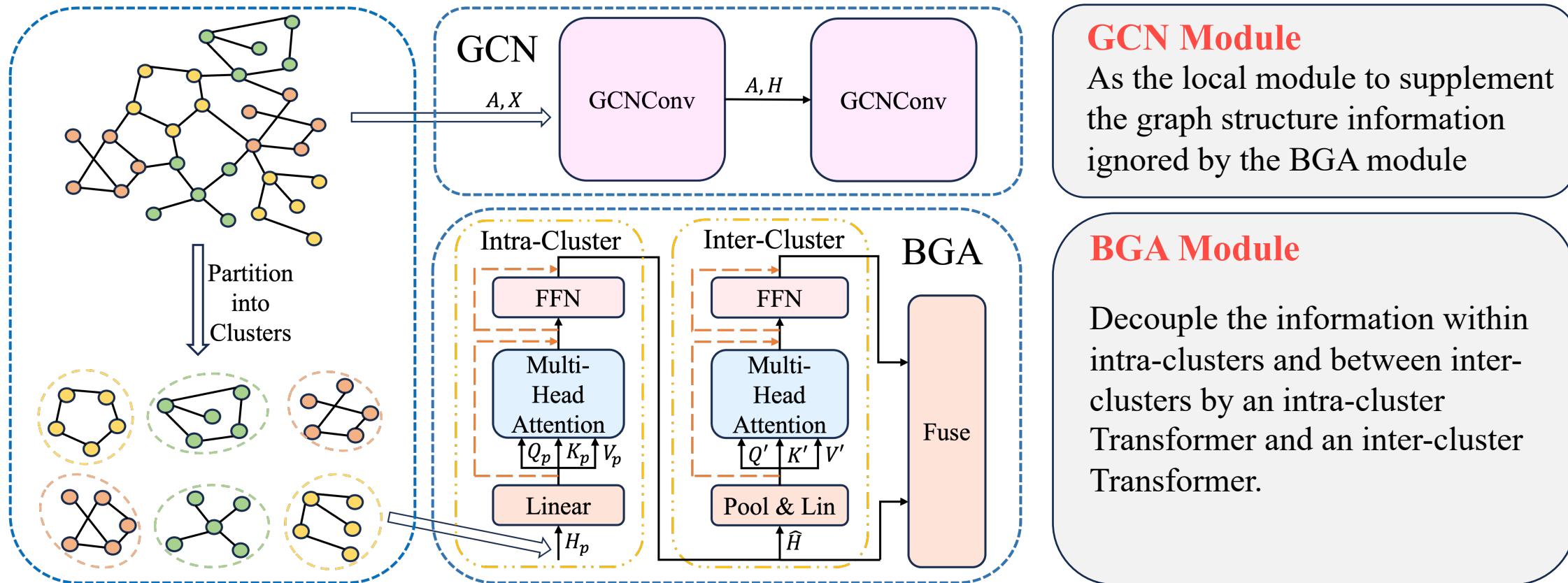
Table 1. The Attn-SNR and testing accuracy of different models.

Dataset	Metric	VT	NF	VT-D
Cora	Attn-SNR	-6.97	0.43	12.05
	Accuracy	55.18	80.20	82.12
CiteSeer	Attn-SNR	-7.19	-5.09	8.72
	Accuracy	50.72	71.50	61.80

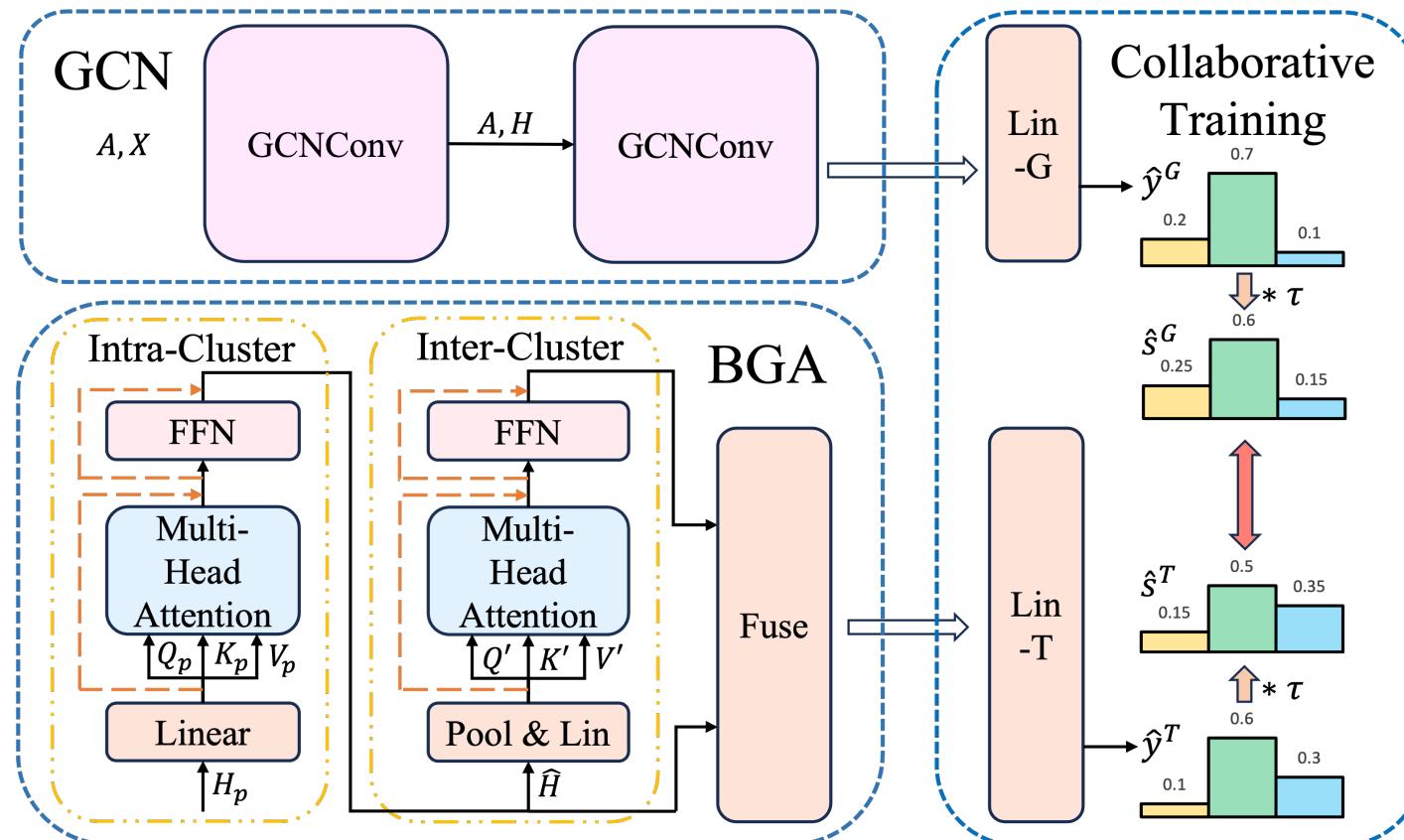
Experimental analysis:
Solving the **over-globalizing problem** can improve the performance of Graph Transformers.

- 1 **Background**
- 2 **Over-Globalizing Problem**
- 3 **Method**
- 4 **Experiments**
- 5 **Conclusions**

We propose a novel Bi-Level Global Graph Transformer with Collaborative Training (CoBFormer).



We propose a novel Bi-Level Global Graph Transformer with Collaborative Training (CoBFormer).



$$\hat{\mathbf{Z}}^G = \text{Lin-G}(\text{GCN}(\mathbf{A}, \mathbf{X})),$$

$$\hat{\mathbf{Z}}^T = \text{Lin-T}(\text{BGA}(\mathbf{X}, \mathcal{P})).$$

$$\hat{\mathbf{Y}}^G = \text{SoftMax}(\hat{\mathbf{Z}}^G), \hat{\mathbf{Y}}^T = \text{SoftMax}(\hat{\mathbf{Z}}^T),$$

$$\hat{\mathbf{S}}^G = \text{SoftMax}(\hat{\mathbf{Z}}^G * \tau), \hat{\mathbf{S}}^T = \text{SoftMax}(\hat{\mathbf{Z}}^T * \tau),$$

$$\mathcal{L}_{ce} = - (\mathbb{E}_{\mathbf{y}_u, u \in \mathcal{V}_L} \log(\hat{\mathbf{y}}_u^G) + \mathbb{E}_{\mathbf{y}_u, u \in \mathcal{V}_L} \log(\hat{\mathbf{y}}_u^T)),$$

$$\mathcal{L}_{co} = - (\mathbb{E}_{\hat{\mathbf{s}}_u^G, u \in \mathcal{V}_U} \log(\hat{\mathbf{s}}_u^T) + \mathbb{E}_{\hat{\mathbf{s}}_u^T, u \in \mathcal{V}_U} \log(\hat{\mathbf{s}}_u^G)),$$

$$\mathcal{L} = \alpha * \mathcal{L}_{ce} + (1 - \alpha) * \mathcal{L}_{co}.$$

Collaborative Training

Encourage mutual learning between the GCN and BGA module, thus improving their performance.

3 Method Theoretical Guarantees

Proposition 4.1. Given $u \in \mathcal{V}_p, v \in \mathcal{V}_q$, along with a well-trained inter-cluster attention score matrix $\hat{\mathbf{A}} \in \mathbb{R}^{P \times P}$. Let $\hat{\alpha}_{pq}$ represent the attention score between clusters p and q . Then the approximate attention score between node u and v can be expressed as $\hat{\alpha}_{uv} = \frac{\hat{\alpha}_{pq}}{|\mathcal{V}_q|}$.

Theorem 4.2. Consider $P(\mathbf{L}, \mathbf{U})$ as the true label distribution, $P_G(\mathbf{L}, \mathbf{U})$ as the predicted label distribution by the GCN, and $P_T(\mathbf{L}, \mathbf{U})$ as the predicted label distribution by the BGA module. The following relations hold:

$$\begin{aligned} \mathbb{E}_{P(\mathbf{L}, \mathbf{U})} \log P_G(\mathbf{L}, \mathbf{U}) &= \mathbb{E}_{P(\mathbf{L})} \log P_G(\mathbf{L}) + \\ &\quad \mathbb{E}_{P_T(\mathbf{U}|\mathbf{L})} \log P_G(\mathbf{U}|\mathbf{L}) - \\ &\quad \text{KL}(P_T(\mathbf{U}|\mathbf{L}) \| P(\mathbf{U}|\mathbf{L})), \quad (15) \\ \mathbb{E}_{P(\mathbf{L}, \mathbf{U})} \log P_T(\mathbf{L}, \mathbf{U}) &= \mathbb{E}_{P(\mathbf{L})} \log P_T(\mathbf{L}) + \\ &\quad \mathbb{E}_{P_G(\mathbf{U}|\mathbf{L})} \log P_T(\mathbf{U}|\mathbf{L}) - \\ &\quad \text{KL}(P_G(\mathbf{U}|\mathbf{L}) \| P(\mathbf{U}|\mathbf{L})), \end{aligned}$$

where $\text{KL}(\cdot \| \cdot)$ is the Kullback-Leibler divergence.

Our BGA module can keep a global receptive ability

Our proposed collaborative training can improve the generalization ability of our GCN module and BGA module.

- 1 **Background**
- 2 **Over-Globalizing Problem**
- 3 **Method**
- 4 **Experiments**
- 5 **Conclusions**

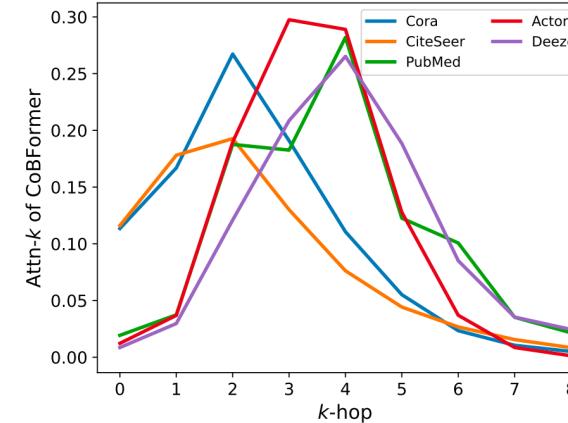
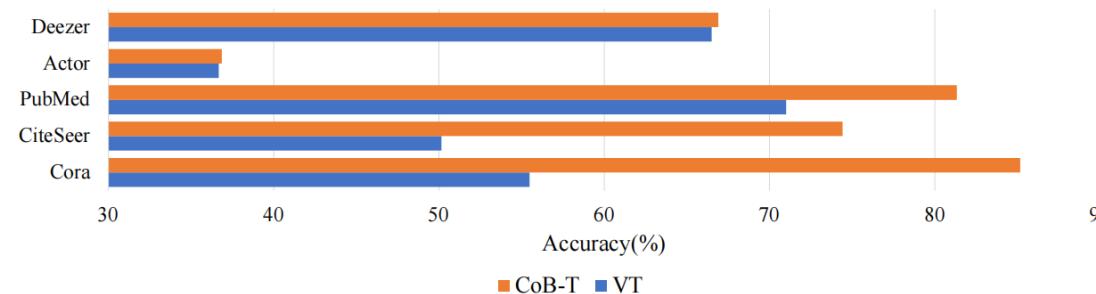
We conducted node classification on seven real-world datasets including homophilic graphs, heterophilic graphs and large scale networks.

Table 2. Quantitative results ($\% \pm \sigma$) on node classification.

Dataset	Metric	GCN	GAT	NodeFormer	NAGphormer	SGFormer	CoB-G	CoB-T
Cora	Mi-F1	81.44 ± 0.78	81.88 ± 0.99	80.30 ± 0.66	79.62 ± 0.25	81.48 ± 0.94	84.96 ± 0.34	85.28 ± 0.16
	Ma-F1	80.65 ± 0.91	80.56 ± 0.55	79.12 ± 0.66	78.78 ± 0.57	79.28 ± 0.49	83.52 ± 0.15	84.10 ± 0.28
CiteSeer	Mi-F1	71.84 ± 0.22	72.26 ± 0.97	71.58 ± 1.74	67.46 ± 1.33	71.96 ± 0.13	74.68 ± 0.33	74.52 ± 0.48
	Ma-F1	68.69 ± 0.38	65.67 ± 2.28	67.28 ± 1.87	64.47 ± 1.58	68.49 ± 0.65	69.73 ± 0.45	69.82 ± 0.55
PubMed	Mi-F1	79.26 ± 0.23	78.46 ± 0.22	78.96 ± 2.71	77.36 ± 0.96	78.04 ± 0.41	80.52 ± 0.25	81.42 ± 0.53
	Ma-F1	79.02 ± 0.19	77.82 ± 0.22	78.14 ± 2.51	76.76 ± 0.91	77.86 ± 0.32	80.02 ± 0.28	81.04 ± 0.49
Actor	Mi-F1	30.97 ± 1.21	30.63 ± 0.68	35.42 ± 1.37	34.83 ± 0.95	37.72 ± 1.00	31.05 ± 1.02	37.41 ± 0.36
	Ma-F1	26.66 ± 0.82	20.73 ± 1.58	32.37 ± 1.38	32.20 ± 1.11	34.11 ± 2.78	27.01 ± 1.77	34.96 ± 0.68
Deezer	Mi-F1	63.10 ± 0.40	62.20 ± 0.41	63.59 ± 2.24	63.71 ± 0.58	66.68 ± 0.47	63.76 ± 0.62	66.96 ± 0.37
	Ma-F1	62.07 ± 0.31	60.99 ± 0.56	62.70 ± 2.20	62.06 ± 1.28	65.22 ± 0.68	62.32 ± 0.94	65.63 ± 0.36
Arxiv	Mi-F1	71.99 ± 0.14	71.30 ± 0.11	67.98 ± 0.60	71.38 ± 0.20	72.50 ± 0.28	73.17 ± 0.18	72.76 ± 0.11
	Ma-F1	51.89 ± 0.19	48.84 ± 0.31	46.24 ± 0.20	51.38 ± 0.47	52.83 ± 0.31	52.31 ± 0.40	51.64 ± 0.09
Products	Mi-F1	75.49 ± 0.24	76.19 ± 0.40	70.71 ± 0.27	76.41 ± 0.53	72.54 ± 0.80	78.09 ± 0.16	78.15 ± 0.07
	Ma-F1	37.02 ± 0.92	35.15 ± 0.20	30.09 ± 0.02	37.48 ± 0.38	33.72 ± 0.42	38.21 ± 0.22	37.91 ± 0.44

Table 3. Test accuracy and GPU memory of various CoBFormer variants. ‘V-A’ denotes the vanilla global attention. ‘B-A’ represents the BGA module. ‘C-T’ indicates whether collaborative training is applied.

Dataset	V-A	B-A	C-T	CoB-G	CoB-T	MEM
Cora	✓	✗	✗	81.44	54.86	0.85G
	✓	✗	✓	83.78	83.82	0.85G
	✗	✓	✗	81.44	68.72	0.38G
	✗	✓	✓	84.96	85.28	0.38G
PubMed	✓	✗	✗	79.26	71.22	8.42G
	✓	✗	✓	80.38	80.36	8.42G
	✗	✓	✗	79.26	74.52	0.50G
	✗	✓	✓	80.52	81.42	0.50G
Deezer	✓	✗	✗	62.07	66.49	20.23G
	✓	✗	✓	63.67	66.86	20.23G
	✗	✓	✗	62.07	66.56	3.97G
	✗	✓	✓	63.76	66.96	3.97G



Our method can effectively alleviate the over-globalizing problem

4 Experiments Parameter Study

We analyze the key parameters:

- the collaborative learning strength coefficient α ,
- the temperature coefficient τ
- the number of clusters P .

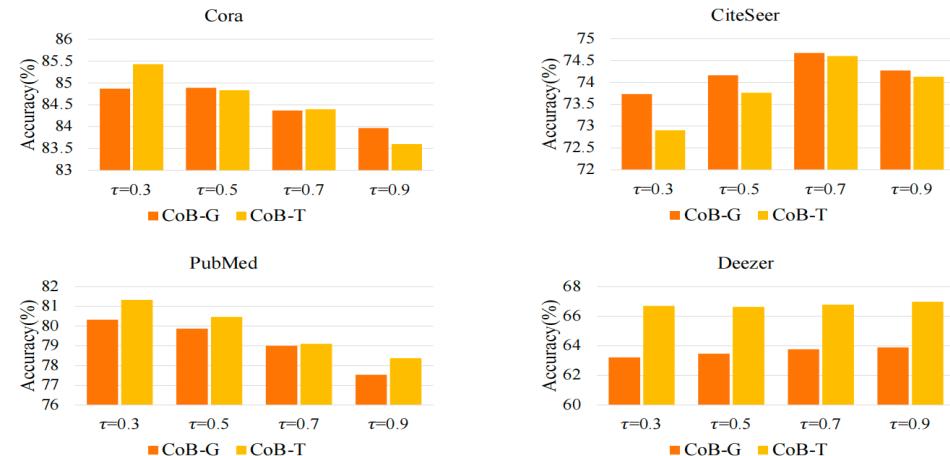


Figure 7. The average test accuracy of CoBFormer for different τ .

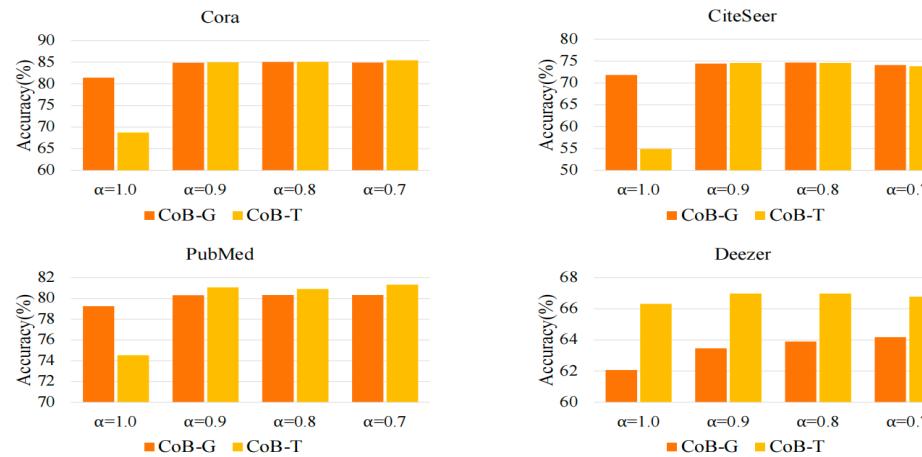


Figure 6. The average test accuracy of CoBFormer for different α .

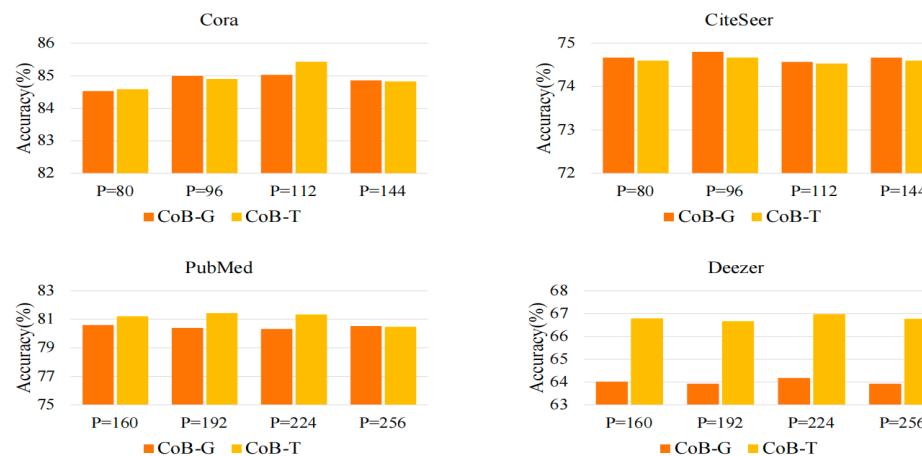


Figure 8. The average test accuracy of CoBFormer for different P .

- 1 **Background**
- 2 **Over-Globalizing Problem**
- 3 **Method**
- 4 **Experiments**
- 5 **Conclusions**

5 Conclusion

- We discover the ***over-globalizing problem*** in Graph Transformers by presenting the theoretical insights and empirical results.
- We propose ***CoBFormer***, a bi-level global graph transformer with collaborative training, aiming at alleviating the over-globalizing problem and improving the generalization ability.
- Extensive experiments demonstrate that CoBFormer outperforms the state-of-the-art Graph Transformers and effectively solves the over-globalizing problem.
- We believe our work will provide valuable guidelines and insights for the development of advanced Graph Transformers.

Thanks

Q&A

Paper: <https://arxiv.org/abs/2405.01102>

Code: <https://github.com/null-xyj/CoBFormer>

Laner

Scan the QR code to add me as a friend.

yujie-xing@bupt.edu.cn