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Graph-structured data, an essential and prevalent form in the real world,
plays a vital role in modeling object interactions
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GNNs effectively utilize their message-passing mechanism to extract useful
information and learn high-quality representations from graph data.
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Graph Convolutional Networks Graph Attention Networks
(GCN, ICLR 2017) (GAT, ICLR 2018)

Unable to stack multi-layers due to over-smoothing and over-squashing,

resulting in limited receptive fields to near neighbors!!!

Kipf, T. N. and Welling, M.. Semi-supervised classification with graph convolutional networks. ICLR 2017.
Velickovi¢, P., Cucurull, G., et al. Graph attention networks. ICLR 2018.
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Graph Transformers construct a fully connected graph and adaptively learn
interaction relationships with the powerful global attention mechanism.
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(NeurIPS 2021)

(ICLR 2024)

Graph Transformers have achieved remarkable success
in graph-level tasks and node-level tasks.
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* It 1s well recognized that the global attention mechanism considers a wider receptive
field 1n a fully connected graph, leading many to believe that useful information can be
extracted from all the nodes.

* A key question arises:
Does the globalizing property always benefit
Graph Transformers?

* We reveal the over-globalizing problem in Graph Transformers by presenting both
empirical evidence and theoretical analysis

* We propose a novel Bi-Level Global Graph Transformer with Collaborative Training
(CoBFormer), to alleviate the over-globalizing problem while keeping the ability to
extract valuable information from distant nodes.
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We empirically find the over-globalizing problem in Graph Transformers.
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Theorem 3.1. For a given node u and a well-trained
uky
Graph Transformer, let 1, = E,cyy, =y, exp(qw),

Then, we have:

e o e sty dfned o Theoretical Analysis: An
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(5) And C¥ possesses the following properties: gl obal attention due to the
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where L is a Lipschitz constant.
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Theorem 3.2. To analyze the impact of k on C¥, we as-
sume that each node has an equal probability ﬁ of be-
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Our theorem aligns well with the real-world scenarios
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Inspired by Theorem 3.1, we define the Attention Signal/Noise Ratio (Attn-SNR) as the
metric to quantify the ability of Graph Transformers to distinguish useful nodes as follows.:

— a’U/U
Attn-SNR = 101g (Zy St AL > .

Zyu Ly, Quv

We evaluate the following models using Attn-SNR and Accuracy:

* VT: Vanilla Transformer

* NF': NodeFormer

 VI-D: VT but double the attention scores between nodes sharing the same label

Table 1. The Attn-SNR and testing accuracy of different models. / \
Experimental analysis:
Solving the over-globalizing

Dataset Metric VT NF VT-D
Attn-SNR | -6.97 0.43 12.05

Cora Accuracy | 55.18 80.20 82.12 L) CEIR B (e
performance of Graph
CiteSeer Attn-SNR | -7.19 -5.09  8.72 TrrelarimE

Accuracy | 50.72 71.50 61.80 K /
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Method

We propose a novel Bi-Level Global Graph Transformer with Collaborative
Training (CoBFormer).
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Method

We propose a novel Bi-Level Global Graph Transformer with Collaborative
Training (CoBFormer).
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Proposition 4.1. Givenu € V), v € V,, along with a well-
trained inter-cluster attention score matrix A € REXF Let
Qu,q represent the attention score between clusters p and q.
Then the approximate attention score between node u and v

A (6%
can be expressed as Oy, = I\f E
q

Theorem 4.2. Consider P(L,U) as the true label distri-
bution, P (L, U) as the predicted label distribution by the
GCN, and Pr(L,U) as the predicted label distribution by
the BGA module. The following relations hold:

Epw,u)log Po(L,U) =Ep (1, log Po(L)+
Ep, (u) log P(U|L)—
KL(Pr(U|L)||P(U|L)),
Ep,vu)log Pr(L,U) =Ep,) log Pr(L)+
Epg (ujL) log Pr(U|L)—
KL(Fe(U|L)| P(U[L)),

(15)

where KL(-||-) is the Kullback-Leibler divergence.

4 N

Our BGA module can keep
a global receptive ability

- )

4 N

Our proposed collaborative
training can improve the
generalization ability of our
GCN module and BGA

module.
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We conducted node classification on seven real-world datasets including
homophilic graphs, heterophilic graphs and large scale networks.

Table 2. Quantitative results (% =+ o) on node classification.

T T e PR

/S N

Dataset | Metric | GCN GAT NodeFormer ~NAGphormer ~ SGFormer | [ CoB-G CoB-T |
c Mi-F1 | 81.44+0.78 81.88+0.99 8030+0.66 79.62+025 81.48+094 ||84.96+034 85.28+0.16
ora Ma-F1 | 80.65+091 80.56+055 79.12+0.66 78.78+057 79.28+049 ||83.52+0.15 84.10+0.28
—_ Mi-F1 | 71.84+022 7226+097 7158+174 6746+133 71.96+0.13 ||74.68 +0.33 74.52 +0.48
HESCEr | Ma-F1 | 68.69+038 65.67+228 67.28+1.87 6447+158 6849+065 ||69.73+045 69.82 +0.55
PubMed | MI-FL | 79.26£0.23  7846+022 7896+271 77.36+096 7804041 [|8052+0.25 81.42+0.53
Ma-F1 | 79.02+0.19 77.82+022 78.14+251 7676+091 77.86+0.32 ||80.02+028 81.04 + 0.49

e Mi-F1 | 3097 +121 30.63+0.68 3542+137 3483+095 37.72+1.00 ||31.05+1.02 37.41+036
ctor Ma-F1 | 26.66+082 2073+158 3237+138 3220+1.11 34.11+278 ||27.01+1.77 34.96 + 0.68
Decper | Mi-FI | 63102040 6220+041 6359£224 6371+058 66.68+0.47 [[63.76+0.62 66.96 £ 0.37
ceze Ma-F1 | 62.07+031 6099+0.56 62.70+220 62.06+128 6522+068 |[62.32+094 65.63 +0.36
Aot Mi-F1 | 7199 +0.14 7130+0.11 6798+0.60 7138+020 72.50+028 [|73.17+0.18 72.76+0.11
i Ma-F1 | 51.89+0.19 4884+031 4624+020 5138+047 52.83+031 ||52.31+040 51.64+0.09
Products | MIFFL | 7349024 76.19+040 70712027  7641£053  72.54%0.80 ||78.09:£0.16 78.15 +0.07
Ma-Fl | 37.02£092 3515£0.20 30.09+0.02 3748+0.38 3372+042 [(3821£022 3791044

N V4
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Table 3. Test accuracy and GPU memory of various CoBFormer o]
variants. ‘V-A’ denotes the vanilla global attention. ‘B-A’ rep- |
resents the BGA module. ‘C-T’ indicates whether collaborative
training is applied.

Our method can
effectively alleviate
the over-globalizing

e
N
(S

Attn-k of CoBFormer
5

005 problem
Dataset | V-A B-A  C-T | CoB-G CoB-T | MEM | \ J
gk = x | 81.44 5486 | 0.85G
e J X 4 | 8378 8382 | 0.85G
x 4 x| 8144 6872 | 0.38G
x W | 8496 8528 | 0.38G
v ox x| 7926 7122 | 842G T e a e
J x4/ | 8038 8036 | 842G | sy
PubMed | ./ % | 7926 7452 | 0.50G ot ey
Decrer
X /| 8052 8142 | 050G e
g
S X X 62.07 60.49 | 20.23G  citseor | — e ——
Vx| 6367 6686 | 2023G @ - eSS
Deezer | LV x | 6207 6656 | 3.97G Aoy %)
x | 6376 6696 | 3.97G CoBT wVT
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Cora

We analyze the key parameters: i I. II II II I II II II

* the collaborative learning s e ™ o st
strength coefficient a, = - .

* the temperature coefficient t I. II II II I .I ll II

* the number of clusters P. e e et

m CoB-G = CoB-T

Figure 6. The average test accuracy of CoBFormer for different o
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Figure 8. The average test accuracy of CoBFormer for different P. 18
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We discover the over-globalizing problem in Graph Transformers by presenting the
theoretical insights and empirical results.

We propose CoB Former, a bi-level global graph transformer with collaborative
training, aiming at alleviating the over-globalizing problem and improving the
generalization ability.

Extensive experiments demonstrate that CoBFormer outperforms the state-of-the-art
Graph Transformers and effectively solves the over-globalizing problem.

We believe our work will provide valuable guidelines and insights for the development
of advanced Graph Transformers.
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Paper: https://arxiv.org/abs/2405.01102
Code: https://github.com/null-xyj/CoBFormer

yujie-xing@bupt.edu.cn

21


https://arxiv.org/abs/2405.01102
https://github.com/null-xyj/CoBFormer

