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Motivation and objective

• Construct prediction regions for multivariate time-series.

• Conformal prediction (CP) has been gaining popularity
(distribution-free and model-free).

• Existing approaches can be conservative.

Goal: Develop sequential CP methods for multivariate
time-series that jointly capture the dependency among
time-series.

2 / 14



Motivation and objective

• Construct prediction regions for multivariate time-series.

• Conformal prediction (CP) has been gaining popularity
(distribution-free and model-free).

• Existing approaches can be conservative.

Goal: Develop sequential CP methods for multivariate
time-series that jointly capture the dependency among
time-series.

2 / 14



Motivation and objective

• Construct prediction regions for multivariate time-series.

• Conformal prediction (CP) has been gaining popularity
(distribution-free and model-free).

• Existing approaches can be conservative.

Goal: Develop sequential CP methods for multivariate
time-series that jointly capture the dependency among
time-series.

2 / 14



Related works

• Univariate sequential CP: leverage feedback during prediction

(Xu & Xie, 2021; Gibbs & Candes, 2021; Xu & Xie, 2023;

Angelopoulos et al., 2024).

• Multivariate CP (Messoudi et al., 2021, 2022; Johnstone &

Ndiaye, 2022; Sun & Yu, 2024).

• Probabilistic forecasting via quantile regression: (Salinas et al.,

2020; Lim et al., 2021)

Challenge: effectively account for dependency across space
and time.

3 / 14



Related works

• Univariate sequential CP: leverage feedback during prediction

(Xu & Xie, 2021; Gibbs & Candes, 2021; Xu & Xie, 2023;

Angelopoulos et al., 2024).

• Multivariate CP (Messoudi et al., 2021, 2022; Johnstone &

Ndiaye, 2022; Sun & Yu, 2024).

• Probabilistic forecasting via quantile regression: (Salinas et al.,

2020; Lim et al., 2021)

Challenge: effectively account for dependency across space
and time.

3 / 14



Proposed MultiDimSPCI

• In essence, MultiDimSPCI handles dependency in
(1) Space through ellipsoidal prediction sets.
(2) Time through the sequential SPCI (Xu & Xie, 2023).

• Data (Xt, Yt), Yt ∈ Rp arrive sequentially and we train a
point predictor f̂ and obtain prediction residuals ϵ̂ on first T
samples (Papadopoulos et al., 2007; Xu & Xie, 2021).

• Let Σ̂ ∈ Rp×p be the empirical covariance of ϵ̂ and Σ̂ρ be the

low-rank approximation of Σ̂.

• Define non-conformity score e(Y ) for a candidate value Y as

ê(Y ) = (ε̂− ε̄)T Σ̂−1
ρ (ε̂− ε̄),

where ε̂ = Y − f̂(X) and ε̄ is the mean of ϵ̂.
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Proposed MultiDimSPCI (cont.)

• The ellipsoidal prediction region Ĉt−1(Xt) at level α is

{Y : Q̂t(β̂) ≤ ê(Y ) ≤ Q̂t(1− α+ β̂)} (1)

=f̂(Xt) + B(
√

Q̂t(1− α+ β̂), ε̄, Σ̂ρ) \ B(
√
Q̂t(β̂), ε̄, Σ̂ρ)

β̂ =argmin
β∈[0,α]

V (Σ̂ρ, Q̂t(1− α+ β))− V (Σ̂ρ, Q̂t(β)) (2)

where Q̂t is the quantile regressor and V denotes the volume of
an ellipsoid B(r, ε̄, Σ̂ρ) = {x ∈ Rp : (x− ε̄)T Σ̂−1

ρ (x− ε̄) ≤ r}.

• Regions in (1) are sequentially constructed on updated ϵ̂,
using adaptively re-fitted Q̂t.
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Remarks on MultiDimSPCI

• Benefits:
• MultiDimSPCI can be used with any base model f̂ and

quantile regressor Q̂t.
• The ellipsoids have simple forms and are efficiently

constructed.

• Differences:
• Versus copula-based CP methods: smaller prediction

regions with less design choices.
• Versus Prob. forecasting methods: improved performance

with theoretical guarantees.
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Theoretical results

• Extend analyses in EnbPI (Xu & Xie, 2021) to Yt ∈ Rp.

• We impose additional assumptions on the error process, so
that Σ̂ converges to Σ in the operator norm.

• We then obtain finite-sample bound on the absolute coverage
gap |P(Yt ∈ Ĉt−1(Xt)|Xt)− (1− α)|.

• Guarantee bounds the worst-case deviation, while empirical
coverage is almost always ≥ 1− α.
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Experiments (simulation)

• Compare MultiDimSPCI against SPCI (Xu & Xie, 2023), which is
applied entry-wise with α̃ = 1− (1− α)1/p per dimension.

Conformal prediction for multi-dimensional time series by ellipsoidal sets

Table 2. Real-data comparison of test coverage and average prediction set size by different methods. The target coverage is 0.95, and
at each p, the smallest size of prediction sets is in bold. Our MultiDimSPCI yields the narrowest confidence sets without sacrificing
coverage for two reasons. First, it explicitly captures dependency among coordinates of Yt by forming ellipsoidal prediction sets. Second,
it captures temporal dependency among non-conformity scores upon adaptive re-estimation of score quantiles.

(a) Wind data

Method p = 2 coverage p = 2 size p = 4 coverage p = 4 size p = 8 coverage p = 8 size
MultiDimSPCI 0.97 1.60 0.96 7.02 0.96 72.10

CopulaCPTS (Sun & Yu, 2024) 0.98 2.55 0.97 10.23 0.97 252.67
Local ellipsoid (Messoudi et al., 2022) 0.96 3.51 0.97 13.07 0.98 1.09e+3

Copula (Messoudi et al., 2021) 0.98 2.81 0.98 10.32 0.97 1.60e+3
TFT (Lim et al., 2021) 0.94 10.61 0.75 159.39 0.94 2.91e+4

DeepAR (Salinas et al., 2020) 0.96 7.07 0.76 67.97 0.96 1.79e+5
(b) Solar data

Method p = 2 coverage p = 2 size p = 4 coverage p = 4 size p = 8 coverage p = 8 size
MultiDimSPCI 0.96 1.68 0.96 2.89 0.97 4.97

CopulaCPTS (Sun & Yu, 2024) 0.99 4.36 0.99 37.56 0.99 3.28e+3
Local ellipsoid (Messoudi et al., 2022) 0.97 1.32 0.97 3.20 0.97 43.07

Copula (Messoudi et al., 2021) 0.99 4.11 0.99 27.73 0.99 1.42e+3
TFT (Lim et al., 2021) 0.99 13.68 0.99 71.72 0.93 1.19e+3

DeepAR (Salinas et al., 2020) 0.97 10.76 0.98 157.09 0.74 31.82
(c) Traffic data

Method p = 2 coverage p = 2 size p = 4 coverage p = 4 size p = 8 coverage p = 8 size
MultiDimSPCI 0.96 1.31 0.96 1.93 0.96 2.98

CopulaCPTS (Sun & Yu, 2024) 0.95 1.70 0.94 3.15 0.95 14.10
Local ellipsoid (Messoudi et al., 2022) 0.95 1.36 0.94 2.08 0.95 4.13

Copula (Messoudi et al., 2021) 0.95 1.44 0.95 3.90 0.94 40.60
TFT (Lim et al., 2021) 0.89 9.07 0.93 87.92 0.88 9.69e+2

DeepAR (Salinas et al., 2020) 0.87 13.53 0.88 57.20 0.82 9.89e+3

Table 3. Simulation results by both methods. Target coverage is 90%. Standard deviation is computed over ten independent trials in which
training and test data are regenerated.

(a) Independent AR(w)

p 8 10 16 20
Method MultiDim

SPCI
SPCI

(entry-wise)
MultiDim

SPCI
SPCI

(entry-wise)
MultiDim

SPCI
SPCI

(entry-wise)
MultiDim

SPCI
SPCI

(entry-wise)

Coverage 90.0% (0.31) 89.9% (0.30) 89.8% (0.25) 89.8% (0.27) 89.9% (0.24) 89.9% (0.23) 90.0% (0.26) 89.8% (0.30)
Size 1.30e+5

(1.43e+3)
3.68e+5

(6.44e+3)
2.65e+6

(4.79e+4)
1.22e+7

(1.61e+5)
2.23e+10
(5.61e+8)

5.84e+11
(1.39e+10)

9.15e+12
(2.97e+11)

8.67e+14
(2.90e+13)

(b) VAR(w)

p 8 10 16 20
Method MultiDim

SPCI
SPCI

(entry-wise)
MultiDim

SPCI
SPCI

(entry-wise)
MultiDim

SPCI
SPCI

(entry-wise)
MultiDim

SPCI
SPCI

(entry-wise)

Coverage 90.0% (0.23) 91.6% (0.18) 89.9% (0.23) 90.7% (0.31) 89.9% (0.20) 91.0% (0.19) 90.0% (0.25) 90.9% (0.19)
Size 7.16e+4

(7.25e+2)
9.27e+6

(1.46e+5)
3.63e+7

(4.79e+5)
3.24e+9

(6.09e+7)
8.55e+12

(1.45e+11)
1.91e+17

(5.38e+15)
1.14e+16

(2.11e+14)
7.41e+22

(1.68e+21)

Data generation. Denote Yt = [Yi1, . . . , Yip]
T 2 Rp for

p � 2. We generate Yt as

Yt =
wX

l=1

↵lYi�l + "t, "t ⇠ N(0,⌃). (19)

In (19), ↵l 2 Rp⇥p contains the set of coefficients, where
we further construct them so that the sequences {Yt} are sta-

tionary. In the first case of independent AR(w) sequences,
we have ⌃ = Ip. In the second case of VAR(w) sequences,
we design ⌃ = BBT to be a positive definite covariance
matrix, where Bij

i.i.d.⇠ Unif[�1, 1].

Setup. In both cases of AR and VAR time series follow-
ing (19), we let w = 5 and vary p 2 {2, 4, 8, 10, 16, 20}.

8
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(a) Independent AR(w)

p 2 4 8 10 16 20
Method MultiDim

SPCI
SPCI MultiDim

SPCI
SPCI MultiDim

SPCI
SPCI MultiDim

SPCI
SPCI MultiDim

SPCI
SPCI MultiDim

SPCI
SPCI

Coverage 90.0%
(0.26)

90.0%
(0.29)

90.0%
(0.25)

89.9%
(0.14)

90.0%
(0.31)

89.9%
(0.30)

89.8%
(0.25)

89.8%
(0.27)

89.9%
(0.24)

89.9%
(0.23)

90.0%
(0.26)

89.8%
(0.30)

Size 1.45e+1
(9.34e-2)

1.52e+1
(8.73e-2)

3.00e+2
(2.62e+0)

3.94e+2
(3.38e+0)

1.30e+5
(1.43e+3)

3.68e+5
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Setup. In both cases of AR and VAR time series follow-
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The initial 80K samples {Yt} are training data; the remain-
ing 20K samples are test data. Because SPCI assumes
independence across different univariate sequence, we let
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Experiments (real data)

• Similar rolling coverage with significantly narrower and more
stable sizes of prediction regions.

(a) Wind data

(b) Solar data

(c) Traffic data

Figure 2: Real-data comparison of rolling coverage (target coverage is 95%) and size of prediction
sets at p = 8. In each subplot of (a)-(c), the top row plots rolling coverage over prediction time
indices (red dashed line is the target coverage) and as boxplots, and the bottom row shows results
for rolling sizes. We only visualize the comparison of MultiDimSPCI with selected CP baselines,
which have comparable average size of prediction regions in Table 3.

Setup. In both cases of AR and VAR time series following (22), we let w = 5 and vary p ∈
{2, 4, 8, 10, 16, 20}. The initial 80K samples {Yt} are training data; the remaining 20K samples

are test data. Because SPCI assumes independence across different univariate sequence, we let

α̃ = 1− (1−α)1/p and apply SPCI on individual sequences with the corrected α̃. The multivariate

linear regression method is used as the point predictor.

17
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Summary

• The main novelty of MultiDimSPCI lies in jointly capturing
spatial and temporal dependency in multivariate time-series.

• Against existing multivariate CP and probabilistic forecasting
approaches, MultiDimSPCI returns much smaller prediction regions
with no coverage loss.

• In the future, we will test the approach on more datasets with
improved quantile estimation approaches.
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