
A Dynamic Algorithm for Weighted
Submodular Cover Problem

Kiarash Banihashem Samira Goudarzi MohammadTaghi Hajiaghayi Peyman Jabbarzade Morteza Monemizadeh

Submodular cover

Input: : Ground set of elements
 : a monotone submodular function
 : a weight function

V
f : 2V → ℝ≥0

w : V → ℝ≥0

Δ(v |A) := f(A ∪ v) − f(A)

Marginal gain
Submodular

Function Δ(v |A) ≥ Δ(v |B)
∀A ⊆ B ⊆ V

Submodular cover

Input: : Ground set of elements
 : a monotone submodular function
 : a weight function

V
f : 2V → ℝ≥0

w : V → ℝ≥0

Constraint: f(S) = f(V)

Cost: Compute a set minimizes the cost S ⊆ V
cost(S) = ∑

v∈S

w(s)

Density of an element

 Density of an element:

 Marginal density of an element:

d(v) :=
f(v)
w(v)

d(v |A) :=
Δ(v |A)

w(v)

∀v ∈ V

∀A ⊆ V, v ∈ V

An important concept in our dynamic algorithm is the density of an element:

Example: Weighted set cover

1
3

5

4 6
7

8
S4 = {4,6,7,8}

S1 = {1,2,3,5}
S2 = {4,5,6}

S3 = {3,7}

V = {S1, S2, S3, S4}Ground set:

U = {1,2,3,4,5,6,7,8}Universe set:

cost(𝒮) = w(S1) + w(S4) = 5Cost:

f(𝒮) = f({S1, S4}) = f(V)Constraint:

w(S1) = 2

w(S2) = 2 w(S3) = 4

w(S4) = 3

2

Query access model

 The algorithm asks queries and an oracle responds.

 The complexity of the model is measured using the number of queries
that the algorithm can make.

Bicriteria

A set is called a -bicriteria approximate solution if it
satisfies

𝒮 (1 − ϵ, c)

f(𝒮) ≥ (1 − ϵ) ⋅ f(V)

cost(𝒮) ≤ c ⋅ cost(𝒮opt)

𝒮opt : the optimal solution

Dynamic model

Insert(S10) Insert(S3) Insert(S3) Insert(S20)

Solution:

S10, S3, S20

Delete(S10)

Dynamic model

Insert(S10) Insert(S3) Insert(S3) Insert(S20) Delete(S10)

Solution:

S3, S20

Dynamic model

In the dynamic model, we process updates and maintain an approximate solution
efficiently.
The main constraint of a dynamic algorithm is the update time.

The update time is the number of queries that we ask to compute a solution at
time given solution at time .

𝒮t
t 𝒮t−1 t − 1

Main Theorem

There is an algorithm for dynamic submodular cover that

 Maintains an expected -bicriteria solution

 Having expected amortized
update time

(1 − ϵ, ϵ−1)

poly(log(n), log(ρ), ϵ−1)

ρ =
maxv∈V w(v)
minv∈V w(v)

n = |V |

Weight ratio

Related work

Offline: Wolsey [Combinatorica, 1982] shows that greedy
algorithm is a logarithmic approximation algorithm.

Streaming: Norouzi-Fard et al. [NeurIPS, 2016] give
-bicriteria approximation algorithm for special case

where the weights are uniform, i.e., each element has weight 1.
(1 − ϵ, O(ϵ−1))

Dynamic: Gupta and Levin [FOCS, 2020] consider a different
variant of the problem in which the submodular function changes
over time.

In contrast, our approach assumes that the underlying function is
fixed and the ground set changes. This is aligned with the models
considered in the streaming setting [Norouzi-Fard et al., NeurIPS,
2016]

f

Related work

Overview

Offline Algorithm

L0 = V G0 = ∅

Offline Algorithm

L0 = V

L1 = {e ∈ L0 : d(e |G0) ≥ τ}

G0 = ∅

G1

Offline Algorithm

L0 = V

L1 = {e ∈ L0 : d(e |G0) ≥ τ}

G0 = ∅

G1

Filtered Survived Selected

G2L2

Offline Algorithm

L0 = V

L1 = {e ∈ L0 : d(e |G0) ≥ τ}

G0 = ∅

G1

Ignored Survived Selected

G2L2

Ignored Survived Selected

GT

LT = ∅

poly(log(n), ϵ−1, ρ)

Sampling

At any level , we bucketize elements based on their marginal density and
weights and select a sample set such that

 Expansion(): In expectation, at least -fraction of is
added to

 Filtering(): In expectation, at least -fraction of

elements of are have their marginal gain decreased sufficiently and
do not appear in .

Li
Si

Gi (1 − ϵ) Si
Gi

Vi
1

poly(log(n), ϵ−1, ρ)
Li

Li+1

Thank you

