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Submodular cover

Input:                       : Ground set of elements  
   : a monotone submodular function
   : a weight function

V
f : 2V → ℝ≥0

w : V → ℝ≥0

Δ(v |A) := f(A ∪ v) − f(A)

Marginal gain
Submodular 

Function Δ(v |A) ≥ Δ(v |B)
∀A ⊆ B ⊆ V



Submodular cover

Input:                       : Ground set of elements  
   : a monotone submodular function
   : a weight function

V
f : 2V → ℝ≥0

w : V → ℝ≥0

Constraint: f(S) = f(V )

Cost: Compute a set  minimizes the cost S ⊆ V
cost(S) = ∑

v∈S

w(s)



Density of an element

   Density of an element: 

  Marginal density of an element: 

d(v) :=
f(v)
w(v)

d(v |A) :=
Δ(v |A)

w(v)

∀v ∈ V

∀A ⊆ V, v ∈ V

An important concept in our dynamic algorithm is the density of an element:



Example: Weighted set cover
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S4 = {4,6,7,8}

S1 = {1,2,3,5}
S2 = {4,5,6}

S3 = {3,7}

V = {S1, S2, S3, S4}Ground set:

U = {1,2,3,4,5,6,7,8}Universe set:

cost(𝒮) = w(S1) + w(S4) = 5Cost: 

f(𝒮) = f({S1, S4}) = f(V)Constraint: 

w(S1) = 2

w(S2) = 2 w(S3) = 4

w(S4) = 3

2



Query access model

 The algorithm asks queries and an oracle responds. 

 The complexity of the model is measured using the number of queries 
that the algorithm can make.



Bicriteria

A set  is called a -bicriteria approximate solution if it 
satisfies 

   

 

𝒮 (1 − ϵ, c)

f(𝒮) ≥ (1 − ϵ) ⋅ f(V )

cost(𝒮) ≤ c ⋅ cost(𝒮opt)

𝒮opt : the optimal solution



Dynamic model

Insert(S10) Insert(S3) Insert(S3) Insert(S20)

Solution: 

S10, S3, S20

Delete(S10)



Dynamic model

Insert(S10) Insert(S3) Insert(S3) Insert(S20) Delete(S10)

Solution: 

S3, S20



Dynamic model

In the dynamic model, we process updates and maintain an approximate solution 
efficiently.  
The main constraint of a dynamic algorithm is the update time.

The update time is the number of queries that we ask to compute a solution  at 
time  given solution  at time .

𝒮t
t 𝒮t−1 t − 1



Main Theorem

There is an algorithm for dynamic submodular cover that 

  Maintains an expected -bicriteria solution

 Having expected amortized  
update time

(1 − ϵ, ϵ−1)

poly(log(n), log(ρ), ϵ−1)

ρ =
maxv∈V w(v)
minv∈V w(v)

n = |V |

Weight ratio



Related work

Offline:  Wolsey [Combinatorica, 1982] shows that greedy 
algorithm is a logarithmic approximation algorithm.

Streaming: Norouzi-Fard et al. [NeurIPS, 2016] give 
-bicriteria approximation algorithm for special case 

where the weights are uniform, i.e., each element has weight 1.
(1 − ϵ, O(ϵ−1))



Dynamic: Gupta and Levin [FOCS, 2020] consider a different 
variant of the problem in which the submodular function  changes 
over time. 

In contrast, our approach assumes that the underlying function is 
fixed and the ground set changes. This is aligned with the models 
considered in the streaming setting [Norouzi-Fard et al., NeurIPS, 
2016]

f

Related work



Overview



Offline Algorithm

L0 = V G0 = ∅



Offline Algorithm

L0 = V

L1 = {e ∈ L0 : d(e |G0) ≥ τ}

G0 = ∅

G1



Offline Algorithm

L0 = V

L1 = {e ∈ L0 : d(e |G0) ≥ τ}

G0 = ∅

G1

Filtered Survived Selected

G2L2



Offline Algorithm

L0 = V

L1 = {e ∈ L0 : d(e |G0) ≥ τ}

G0 = ∅

G1

Ignored Survived Selected

G2L2

Ignored Survived Selected

GT

LT = ∅

poly(log(n), ϵ−1, ρ)



Sampling

At any level , we bucketize elements based on their marginal density and 
weights and select a sample set   such that 

   Expansion( ): In expectation, at least -fraction of  is 
added to 

  Filtering( ): In expectation, at least -fraction of 

elements of  are have their marginal gain decreased sufficiently and 
do not appear in .

Li
Si

Gi (1 − ϵ) Si
Gi

Vi
1

poly(log(n), ϵ−1, ρ)
Li

Li+1



Thank you


