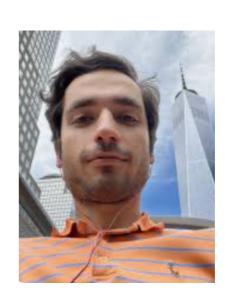


A Dynamic Algorithm for Weighted Submodular Cover Problem

Kiarash Banihashem

Samira Goudarzi

MohammadTaghi Hajiaghayi



Peyman Jabbarzade

Morteza Monemizadeh

Submodular cover

Input:

: Ground set of elements

 $f: 2^V \to \mathbb{R}^{\geq 0}$: a monotone submodular function $w: V \to \mathbb{R}^{\geq 0}$: a weight function

Marginal gain

$$\Delta(v \mid A) := f(A \cup v) - f(A)$$

Submodular
Function
$$\Delta(v \mid A) \ge \Delta(v \mid B)$$

$$\forall A \subseteq B \subseteq V$$

Submodular cover

Input:

: Ground set of elements

 $f: 2^V \to \mathbb{R}^{\geq 0}$: a monotone submodular function

 $w: V \to \mathbb{R}^{\geq 0}$: a weight function

Cost:

Compute a set $S \subseteq V$ minimizes the cost

$$cost(S) = \sum_{v \in S} w(s)$$

Constraint:

$$f(S) = f(V)$$

Density of an element

An important concept in our dynamic algorithm is the density of an element:

Density of an element:
$$d(v) := \frac{f(v)}{w(v)}$$

$$\forall v \in V$$

Marginal density of an element:
$$d(v | A) := \frac{\Delta(v | A)}{w(v)}$$
 $\forall A \subseteq V, v \in V$

Example: Weighted set cover

$$w(S_1) = 2$$

$$S_1 = \{1,2,3,5\}$$

$$S_2 = \{4,5,6\}$$

$$S_3 = \{3,7\}$$

$$S_4 = \{4,6,7,8\}$$

$$w(S_2) = 2$$

$$w(S_2) = 2$$

$$w(S_2) = 2$$
 $w(S_3) = 4$

Ground set:
$$V = \{S_1, S_2, S_3, S_4\}$$

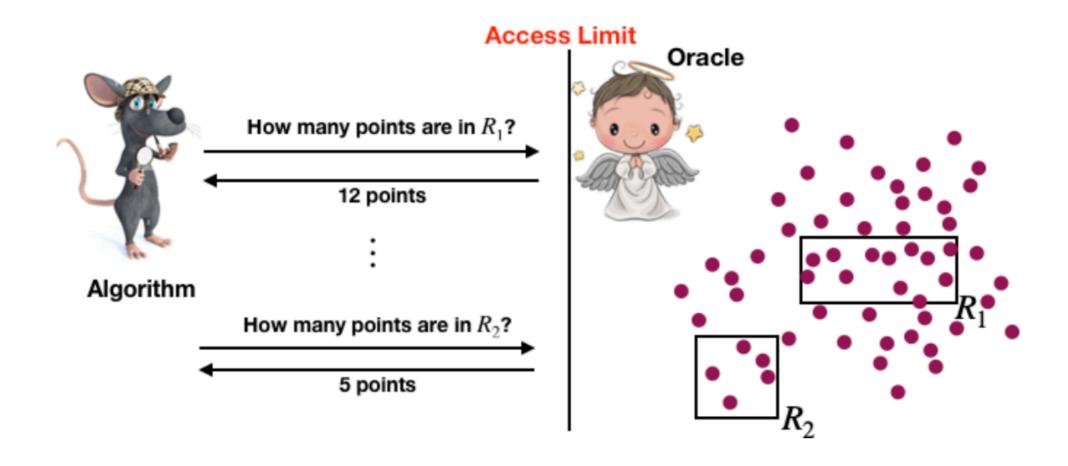
Universe set:

$$U = \{1,2,3,4,5,6,7,8\}$$

$$cost(S) = w(S_1) + w(S_4) = 5$$

Constraint:
$$f(S) = f(\{S_1, S_4\}) = f(V)$$

Query access model



- The algorithm asks queries and an oracle responds.
- The complexity of the model is measured using the number of queries that the algorithm can make.

Bicriteria

A set \mathcal{S} is called a $(1 - \epsilon, c)$ -bicriteria approximate solution if it satisfies

$$f(\mathcal{S}) \ge (1 - \epsilon) \cdot f(V)$$

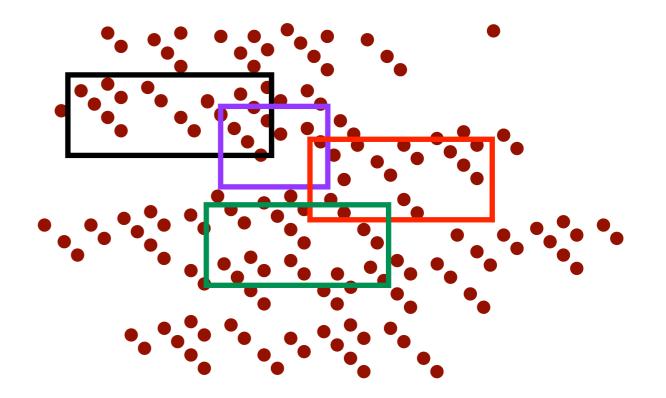
 S_{opt}

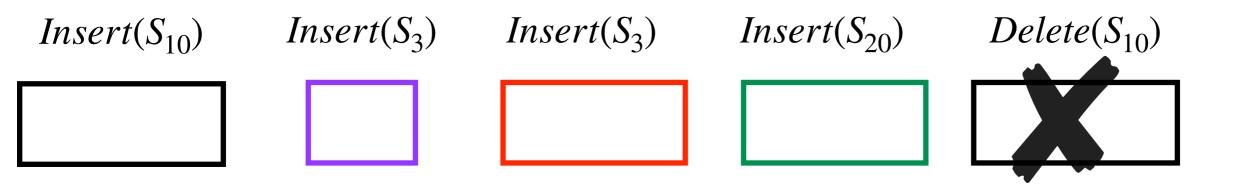
: the optimal solution

Dynamic model

Solution:

$$S_{10}, S_3, S_{20}$$

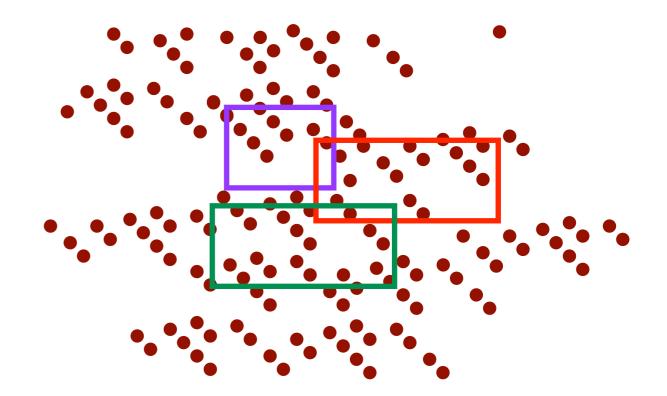


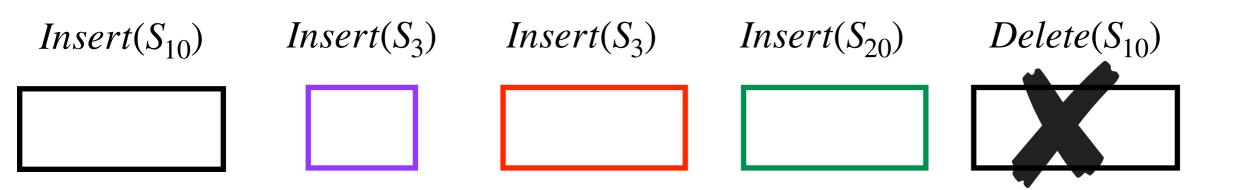


Dynamic model

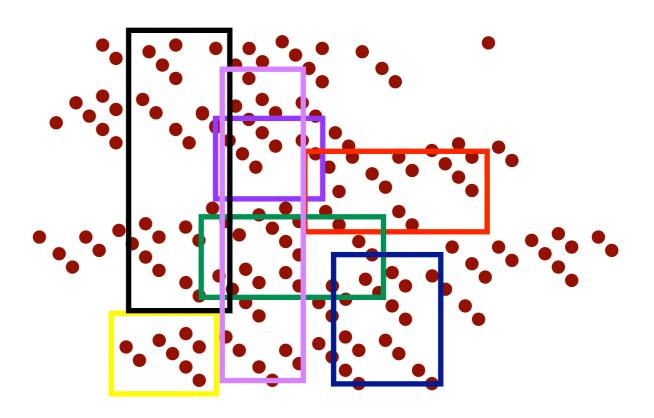
Solution:

$$S_3, S_{20}$$





Dynamic model

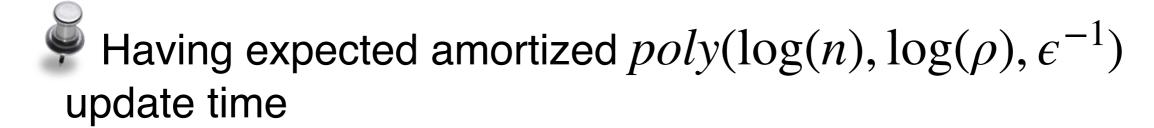


- In the dynamic model, we process updates and maintain an approximate solution efficiently.
- The main constraint of a dynamic algorithm is the update time.
- \bigcirc The **update** time is the number of queries that we ask to compute a solution \mathcal{S}_t at time t given solution \mathcal{S}_{t-1} at time t-1.

Main Theorem

There is an algorithm for dynamic submodular cover that

Maintains an expected $(1 - \epsilon, \epsilon^{-1})$ -bicriteria solution



$$n = |V|$$

Weight ratio
$$\rho = \frac{\max_{v \in V} w(v)}{\min_{v \in V} w(v)}$$

Related work

Offline: Wolsey [Combinatorica, 1982] shows that greedy algorithm is a logarithmic approximation algorithm.

Streaming: Norouzi-Fard et al. [NeurIPS, 2016] give $(1 - \epsilon, O(\epsilon^{-1}))$ -bicriteria approximation algorithm for special case where the weights are uniform, i.e., each element has weight 1.

Related work

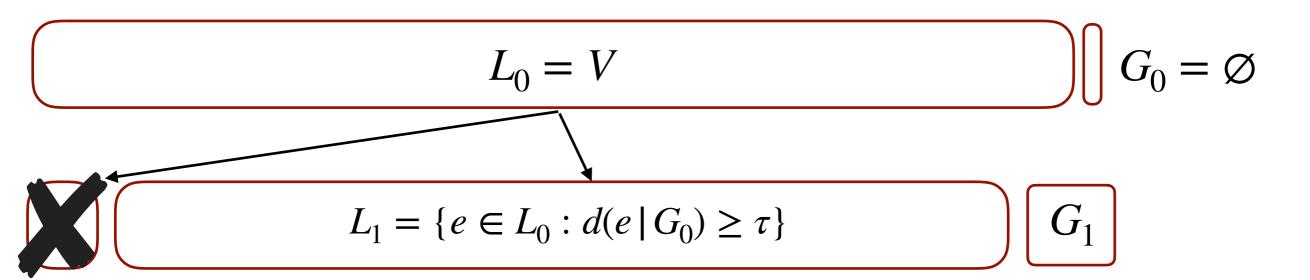
Dynamic: Gupta and Levin [FOCS, 2020] consider a different variant of the problem in which the submodular function f changes over time.

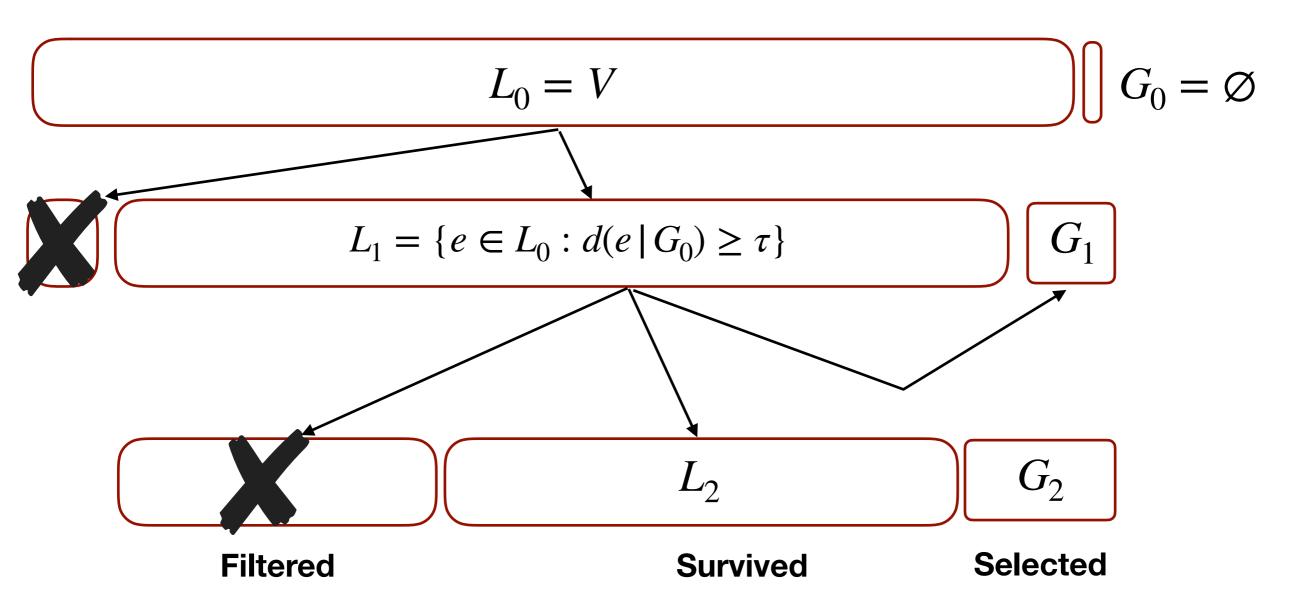
In contrast, our approach assumes that the underlying function is fixed and the ground set changes. This is aligned with the models considered in the streaming setting [Norouzi-Fard et al., NeurIPS, 2016]

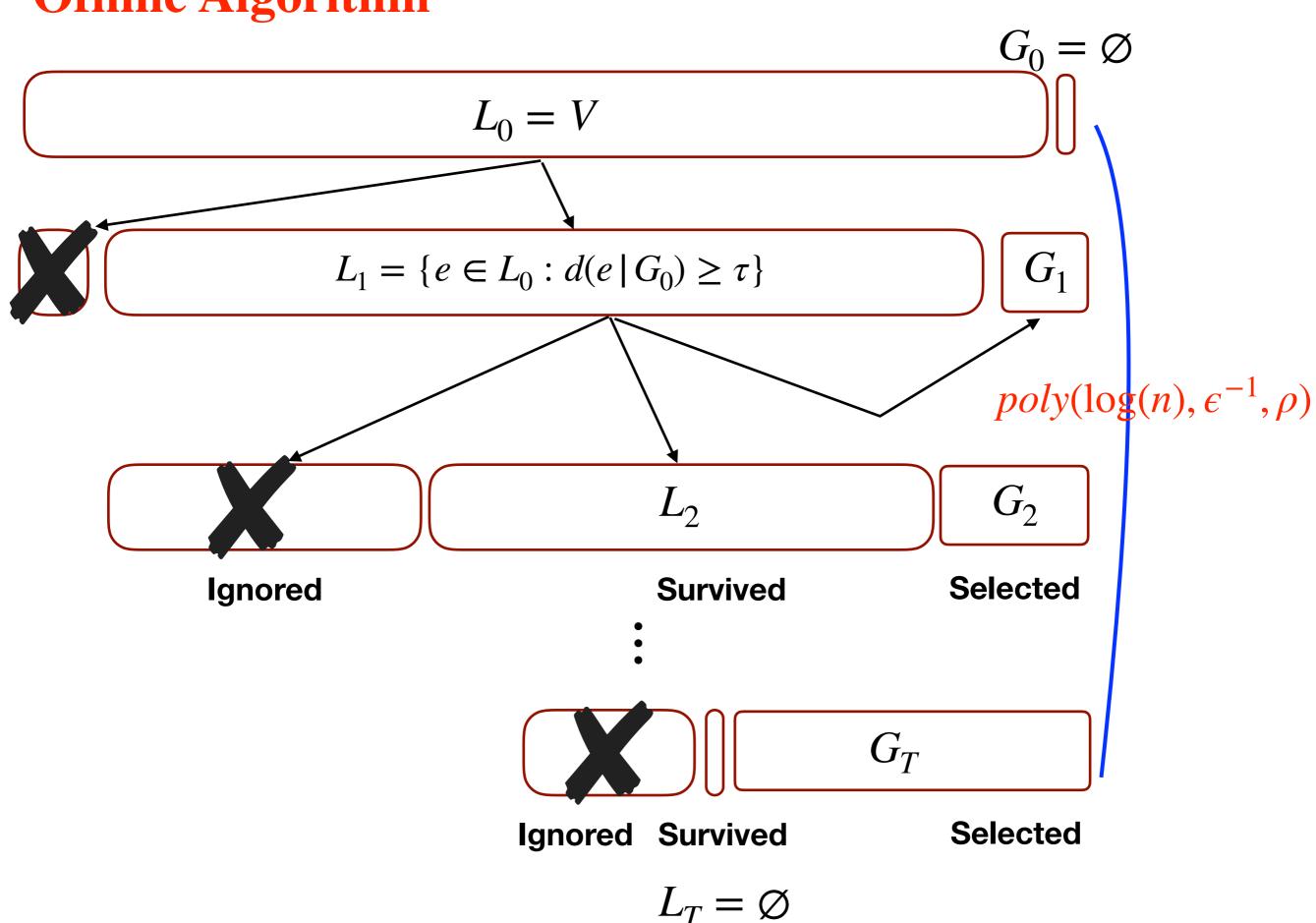
Overview

$$L_0 = V$$

$$G_0 = \emptyset$$







Sampling

At any level L_i , we bucketize elements based on their marginal density and weights and select a sample set S_i such that

Expansion(G_i): In expectation, at least $(1 - \epsilon)$ -fraction of S_i is added to G_i

Filtering(V_i): In expectation, at least $\frac{1}{poly(\log(n), \epsilon^{-1}, \rho)}$ -fraction of

elements of L_i are have their marginal gain decreased sufficiently and do not appear in L_{i+1} .

Thank you