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Entangled latent space of Diffusion Models 
●Diffusion models lack understanding of its latent space compared to 

GANs and VAEs.
● Existence of abrupt changes during latent traversal of diffusion models.
● It implies that entanglement exists in the latent space of diffusion 

models.

Definition and Properties of Scaled Isometric Mapping

[1] Karras et al., “Analyzing and improving the image quality of stylegan.”, 2020 [2] Karras et al.,  “Alias-free generative adversarial networks”, 2021 [3] Dockhorn et al., “GENIE: Higher-order Denoising Diffusion Solvers”, 2022 [4] Kwon et al., “Diffusion Models already have a Semantic Latent Space”, 2023  [5] Lee et al., “Regularized Autoencoders for Isometric Representation Learning”, 2022

●The mapping function 𝑓 is a scaled isometry[5] if and only if:

● Isometric Regularizer

Spherical Approximation of the Latent Space

𝒓 = #
𝒊"𝟏

𝒏

𝒙𝒊𝟐~𝝌 𝒏

𝑬 𝒓 ≅ 𝒏 −
𝟏
𝟐

𝑽 𝒓 ≅
𝟏
𝟐

←Accounts for the geometry (distance, 
angle, volume, …) of the given space

●The radii of Gaussian noise vectors follow 𝜒 -
distribution, so we can approximate the noise
vectors reside on the hypersphere manifold 𝑆!"# 𝑟
●We define the Riemannian metric on 𝑆!"# 𝑟 by

choosing stereographic coordinates as the local
coordinates.
● For sufficiently large 𝑡, 1 − ,𝛼$ ≈ 1, and the noise

space comprised of 𝑥$ = 𝛼$𝑥% + 1 − 𝛼$𝜖% can be
approximated as a sphere.

●By using the isometric regularizer, we can encourage the encoder to become closer 
to an isometric mapping and obtain a geometrically disentangled latent space.

• FID – Generation quality

Method

● Image inversion and reconstruction

● Interpolation (CelebA-HQ, LSUN-Church, LSUN-Bedrooms)

Results

• mRTL, MCN, VoR – Proximity to isometry

Quantitative Analysis

●Properties of Isometry
1) Geodesic-preserving property: equal sensitivity of each latent basis
2) Angle-preserving property: preserving orthogonality, disentangled latent basis
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Table 1. Quantitative comparison. Diffusion models trained with our isometry loss achieve consistent improvement over the baselines.
FID-10k# PPL-50k# mRTL# MCN # VoR # LS #

Dataset Model Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours

CIFAR-10 DDPM 10.27 12.50 105 76 2.03 1.92 155 107 0.50 0.57 - -
LSUN-Church DDPM 10.56 13.01 2028 1587 3.71 3.21 375 217 1.92 1.37 - -
LSUN-Bedrooms DDPM 9.49 11.95 4515 3809 3.38 3.21 320 186 1.69 1.12 - -
CelebA-HQ DDPM 15.89 16.18 648 455 2.67 2.50 497 180 1.42 0.85 1.91 1.51
CelebA-HQ LDM 10.79 11.46 439 397 2.89 2.73 322 198 1.04 0.54 2.38 2.15

Table 2. Isometric regularizer vs. Path length regularizer.
Regularizer G FID-10k# PPL-50k#

- - 15.89 648
Lpl (Path length reg.) I 20.04 552
Liso I 16.60 619
Liso (Ours) Gs 16.18 455

Figure 4. RTL with various �iso. A stronger regularization re-
duces the ratio to 1, flattening the trajectories in H.

Comparison with Path Length Regularizer. As men-
tioned in Sec. 2.4, EMA training of path length regularizer
Lpl can be sub-optimal, while isometric regularizer Liso is
scale-free. Indeed, from Tab. 2, we observe that using Lpl

slightly improves PPL from the baseline while significantly
worsens FID. On the other hand, regularizing via Liso with
Gs, considering the accurate geometry of the latent space,
significantly improves PPL while maintaining FID. Also, as
seen in Tab. 3 and Fig. 6, our method demonstrates superior
performance in inversion and reconstruction downstream
tasks. These experiments demonstrate that our isometric
regularizer makes the training more stable and easier.

4.3. Analysis on the Disentanglement of Latent Space X

Interpolation. We first conduct traversals on the latent
space X between two points x,x0

2 X , illustrating the
generated images from interpolated points between them in
Fig. 5. We observe that with our isometric loss the latent
space is better disentangled, resulting in smoother transi-
tions without abrupt changes in gender. More examples are
provided in Fig. VI in Appendix H.

Inversion and Reconstruction. In literature of GANs (Kar-
ras et al., 2020), achieving a lower PPL and consequently
having a disentangled latent space is beneficial for image
inversion and reconstruction. Similarly, we conduct similar
experiments on inversion and reconstruction on diffusion,
using DDIM (Song et al., 2020a) and ADM (Dhariwal &

Table 3. Quantitative comparisons of image inversion and re-
construction. We employ DDIM inversion to convert source
image to latent, and reconstruct the image with DDIM sampling.
Note that low PPL relates to better inversion and reconstruction.

Regularizer PPL-50k MSE # PSNR " SSIM " LPIPS #

- 401 0.00862 0.597 20.6 0.517
Lpl (Path length reg.) 368 0.00667 0.614 21.7 0.521
Liso (Ours) 340 0.00599 0.674 22.2 0.436

Nichol, 2021) trained on CelebA-HQ. Tab. 3 reports the
effect of our method on the image inversion and recon-
struction tasks. Particularly, the PPL is a direct metric to
measure disentanglement, and thus a lower PPL with our
method strongly indicates better quality of image inversion.
Fig. 6 qualitatively illustrates the advantage of our method
in inversion and reconstruction.

Linearity. We also claim that the latent space X learned
with our isometric loss has a property of linearity. Specifi-
cally, we compare the generated images with ours to base-
line, where both are moved along the slerp in their latent
spaces. For this, we find the editable direction follow-
ing Jang et al. (2022), an unsupervised method for iden-
tifying semantic-factorizing directions in the latent space
based on its local geometry, and perturb the latents through
this direction both for baseline and our model. In this way,
we discover the principal variations of the latent space in
the neighborhood of the base latent code.

Fig. 7 demonstrates that a spherical perturbation on X with
various intensity of �x adds or removes specific attributes
from the generated images accordingly. As seen in Fig. 7,
the baseline often changes multiple factors (age, gender)
abruptly and inconsistently with � (e.g., when � = �1 on
the right example, it suddenly shows a male-like output),
while ours show disentangled changes.

Fig. 8 further illustrates the linearity of X with images ma-
nipulated in two directions in X . For this, we follow Choi
et al. (2021) to find the editing directions. Comparing the
results of baseline and ours, we observe that our method
better disentangles the concept of age and gender, success-
fully drawing a young male and an old female (marked with
red boxes), where the baseline fails to. This indicates that
the latent space trained with our approach is better disen-
tangled, and they can be easily combined back with a linear
combination.
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Table 1. Quantitative comparison. Diffusion models trained with our isometry loss achieve consistent improvement over the baselines.
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LSUN-Bedrooms DDPM 9.49 11.95 4515 3809 3.38 3.21 320 186 1.69 1.12 - -
CelebA-HQ DDPM 15.89 16.18 648 455 2.67 2.50 497 180 1.42 0.85 1.91 1.51
CelebA-HQ LDM 10.79 11.46 439 397 2.89 2.73 322 198 1.04 0.54 2.38 2.15

Table 2. Isometric regularizer vs. Path length regularizer.
Regularizer G FID-10k# PPL-50k#

- - 15.89 648
Lpl (Path length reg.) I 20.04 552
Liso I 16.60 619
Liso (Ours) Gs 16.18 455

Figure 4. RTL with various �iso. A stronger regularization re-
duces the ratio to 1, flattening the trajectories in H.

Comparison with Path Length Regularizer. As men-
tioned in Sec. 2.4, EMA training of path length regularizer
Lpl can be sub-optimal, while isometric regularizer Liso is
scale-free. Indeed, from Tab. 2, we observe that using Lpl

slightly improves PPL from the baseline while significantly
worsens FID. On the other hand, regularizing via Liso with
Gs, considering the accurate geometry of the latent space,
significantly improves PPL while maintaining FID. Also, as
seen in Tab. 3 and Fig. 6, our method demonstrates superior
performance in inversion and reconstruction downstream
tasks. These experiments demonstrate that our isometric
regularizer makes the training more stable and easier.

4.3. Analysis on the Disentanglement of Latent Space X

Interpolation. We first conduct traversals on the latent
space X between two points x,x0

2 X , illustrating the
generated images from interpolated points between them in
Fig. 5. We observe that with our isometric loss the latent
space is better disentangled, resulting in smoother transi-
tions without abrupt changes in gender. More examples are
provided in Fig. VI in Appendix H.

Inversion and Reconstruction. In literature of GANs (Kar-
ras et al., 2020), achieving a lower PPL and consequently
having a disentangled latent space is beneficial for image
inversion and reconstruction. Similarly, we conduct similar
experiments on inversion and reconstruction on diffusion,
using DDIM (Song et al., 2020a) and ADM (Dhariwal &

Table 3. Quantitative comparisons of image inversion and re-
construction. We employ DDIM inversion to convert source
image to latent, and reconstruct the image with DDIM sampling.
Note that low PPL relates to better inversion and reconstruction.

Regularizer PPL-50k MSE # PSNR " SSIM " LPIPS #

- 401 0.00862 0.597 20.6 0.517
Lpl (Path length reg.) 368 0.00667 0.614 21.7 0.521
Liso (Ours) 340 0.00599 0.674 22.2 0.436

Nichol, 2021) trained on CelebA-HQ. Tab. 3 reports the
effect of our method on the image inversion and recon-
struction tasks. Particularly, the PPL is a direct metric to
measure disentanglement, and thus a lower PPL with our
method strongly indicates better quality of image inversion.
Fig. 6 qualitatively illustrates the advantage of our method
in inversion and reconstruction.

Linearity. We also claim that the latent space X learned
with our isometric loss has a property of linearity. Specifi-
cally, we compare the generated images with ours to base-
line, where both are moved along the slerp in their latent
spaces. For this, we find the editable direction follow-
ing Jang et al. (2022), an unsupervised method for iden-
tifying semantic-factorizing directions in the latent space
based on its local geometry, and perturb the latents through
this direction both for baseline and our model. In this way,
we discover the principal variations of the latent space in
the neighborhood of the base latent code.

Fig. 7 demonstrates that a spherical perturbation on X with
various intensity of �x adds or removes specific attributes
from the generated images accordingly. As seen in Fig. 7,
the baseline often changes multiple factors (age, gender)
abruptly and inconsistently with � (e.g., when � = �1 on
the right example, it suddenly shows a male-like output),
while ours show disentangled changes.

Fig. 8 further illustrates the linearity of X with images ma-
nipulated in two directions in X . For this, we follow Choi
et al. (2021) to find the editing directions. Comparing the
results of baseline and ours, we observe that our method
better disentangles the concept of age and gender, success-
fully drawing a young male and an old female (marked with
red boxes), where the baseline fails to. This indicates that
the latent space trained with our approach is better disen-
tangled, and they can be easily combined back with a linear
combination.
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Table 1. Quantitative comparison. Diffusion models trained with our isometry loss achieve consistent improvement over the baselines.
FID-10k# PPL-50k# mRTL# MCN # VoR # LS #

Dataset Model Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours

CIFAR-10 DDPM 10.27 12.50 105 76 2.03 1.92 155 107 0.50 0.57 - -
LSUN-Church DDPM 10.56 13.01 2028 1587 3.71 3.21 375 217 1.92 1.37 - -
LSUN-Bedrooms DDPM 9.49 11.95 4515 3809 3.38 3.21 320 186 1.69 1.12 - -
CelebA-HQ DDPM 15.89 16.18 648 455 2.67 2.50 497 180 1.42 0.85 1.91 1.51
CelebA-HQ LDM 10.79 11.46 439 397 2.89 2.73 322 198 1.04 0.54 2.38 2.15

Table 2. Isometric regularizer vs. Path length regularizer.
Regularizer G FID-10k# PPL-50k#

- - 15.89 648
Lpl (Path length reg.) I 20.04 552
Liso I 16.60 619
Liso (Ours) Gs 16.18 455

Figure 4. RTL with various �iso. A stronger regularization re-
duces the ratio to 1, flattening the trajectories in H.

Comparison with Path Length Regularizer. As men-
tioned in Sec. 2.4, EMA training of path length regularizer
Lpl can be sub-optimal, while isometric regularizer Liso is
scale-free. Indeed, from Tab. 2, we observe that using Lpl

slightly improves PPL from the baseline while significantly
worsens FID. On the other hand, regularizing via Liso with
Gs, considering the accurate geometry of the latent space,
significantly improves PPL while maintaining FID. Also, as
seen in Tab. 3 and Fig. 6, our method demonstrates superior
performance in inversion and reconstruction downstream
tasks. These experiments demonstrate that our isometric
regularizer makes the training more stable and easier.

4.3. Analysis on the Disentanglement of Latent Space X

Interpolation. We first conduct traversals on the latent
space X between two points x,x0

2 X , illustrating the
generated images from interpolated points between them in
Fig. 5. We observe that with our isometric loss the latent
space is better disentangled, resulting in smoother transi-
tions without abrupt changes in gender. More examples are
provided in Fig. VI in Appendix H.

Inversion and Reconstruction. In literature of GANs (Kar-
ras et al., 2020), achieving a lower PPL and consequently
having a disentangled latent space is beneficial for image
inversion and reconstruction. Similarly, we conduct similar
experiments on inversion and reconstruction on diffusion,
using DDIM (Song et al., 2020a) and ADM (Dhariwal &

Table 3. Quantitative comparisons of image inversion and re-
construction. We employ DDIM inversion to convert source
image to latent, and reconstruct the image with DDIM sampling.
Note that low PPL relates to better inversion and reconstruction.

Regularizer PPL-50k MSE # PSNR " SSIM " LPIPS #

- 401 0.00862 0.597 20.6 0.517
Lpl (Path length reg.) 368 0.00667 0.614 21.7 0.521
Liso (Ours) 340 0.00599 0.674 22.2 0.436

Nichol, 2021) trained on CelebA-HQ. Tab. 3 reports the
effect of our method on the image inversion and recon-
struction tasks. Particularly, the PPL is a direct metric to
measure disentanglement, and thus a lower PPL with our
method strongly indicates better quality of image inversion.
Fig. 6 qualitatively illustrates the advantage of our method
in inversion and reconstruction.

Linearity. We also claim that the latent space X learned
with our isometric loss has a property of linearity. Specifi-
cally, we compare the generated images with ours to base-
line, where both are moved along the slerp in their latent
spaces. For this, we find the editable direction follow-
ing Jang et al. (2022), an unsupervised method for iden-
tifying semantic-factorizing directions in the latent space
based on its local geometry, and perturb the latents through
this direction both for baseline and our model. In this way,
we discover the principal variations of the latent space in
the neighborhood of the base latent code.

Fig. 7 demonstrates that a spherical perturbation on X with
various intensity of �x adds or removes specific attributes
from the generated images accordingly. As seen in Fig. 7,
the baseline often changes multiple factors (age, gender)
abruptly and inconsistently with � (e.g., when � = �1 on
the right example, it suddenly shows a male-like output),
while ours show disentangled changes.

Fig. 8 further illustrates the linearity of X with images ma-
nipulated in two directions in X . For this, we follow Choi
et al. (2021) to find the editing directions. Comparing the
results of baseline and ours, we observe that our method
better disentangles the concept of age and gender, success-
fully drawing a young male and an old female (marked with
red boxes), where the baseline fails to. This indicates that
the latent space trained with our approach is better disen-
tangled, and they can be easily combined back with a linear
combination.
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Table 1. Quantitative comparison. Diffusion models trained with our isometry loss achieve consistent improvement over the baselines.
FID-10k# PPL-50k# mRTL# MCN # VoR # LS #

Dataset Model Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours

CIFAR-10 DDPM 10.27 12.50 105 76 2.03 1.92 155 107 0.50 0.57 - -
LSUN-Church DDPM 10.56 13.01 2028 1587 3.71 3.21 375 217 1.92 1.37 - -
LSUN-Bedrooms DDPM 9.49 11.95 4515 3809 3.38 3.21 320 186 1.69 1.12 - -
CelebA-HQ DDPM 15.89 16.18 648 455 2.67 2.50 497 180 1.42 0.85 1.91 1.51
CelebA-HQ LDM 10.79 11.46 439 397 2.89 2.73 322 198 1.04 0.54 2.38 2.15
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- - 15.89 648
Lpl (Path length reg.) I 20.04 552
Liso I 16.60 619
Liso (Ours) Gs 16.18 455

Figure 4. RTL with various �iso. A stronger regularization re-
duces the ratio to 1, flattening the trajectories in H.

Comparison with Path Length Regularizer. As men-
tioned in Sec. 2.4, EMA training of path length regularizer
Lpl can be sub-optimal, while isometric regularizer Liso is
scale-free. Indeed, from Tab. 2, we observe that using Lpl

slightly improves PPL from the baseline while significantly
worsens FID. On the other hand, regularizing via Liso with
Gs, considering the accurate geometry of the latent space,
significantly improves PPL while maintaining FID. Also, as
seen in Tab. 3 and Fig. 6, our method demonstrates superior
performance in inversion and reconstruction downstream
tasks. These experiments demonstrate that our isometric
regularizer makes the training more stable and easier.

4.3. Analysis on the Disentanglement of Latent Space X

Interpolation. We first conduct traversals on the latent
space X between two points x,x0

2 X , illustrating the
generated images from interpolated points between them in
Fig. 5. We observe that with our isometric loss the latent
space is better disentangled, resulting in smoother transi-
tions without abrupt changes in gender. More examples are
provided in Fig. VI in Appendix H.

Inversion and Reconstruction. In literature of GANs (Kar-
ras et al., 2020), achieving a lower PPL and consequently
having a disentangled latent space is beneficial for image
inversion and reconstruction. Similarly, we conduct similar
experiments on inversion and reconstruction on diffusion,
using DDIM (Song et al., 2020a) and ADM (Dhariwal &

Table 3. Quantitative comparisons of image inversion and re-
construction. We employ DDIM inversion to convert source
image to latent, and reconstruct the image with DDIM sampling.
Note that low PPL relates to better inversion and reconstruction.

Regularizer PPL-50k MSE # PSNR " SSIM " LPIPS #

- 401 0.00862 0.597 20.6 0.517
Lpl (Path length reg.) 368 0.00667 0.614 21.7 0.521
Liso (Ours) 340 0.00599 0.674 22.2 0.436

Nichol, 2021) trained on CelebA-HQ. Tab. 3 reports the
effect of our method on the image inversion and recon-
struction tasks. Particularly, the PPL is a direct metric to
measure disentanglement, and thus a lower PPL with our
method strongly indicates better quality of image inversion.
Fig. 6 qualitatively illustrates the advantage of our method
in inversion and reconstruction.

Linearity. We also claim that the latent space X learned
with our isometric loss has a property of linearity. Specifi-
cally, we compare the generated images with ours to base-
line, where both are moved along the slerp in their latent
spaces. For this, we find the editable direction follow-
ing Jang et al. (2022), an unsupervised method for iden-
tifying semantic-factorizing directions in the latent space
based on its local geometry, and perturb the latents through
this direction both for baseline and our model. In this way,
we discover the principal variations of the latent space in
the neighborhood of the base latent code.

Fig. 7 demonstrates that a spherical perturbation on X with
various intensity of �x adds or removes specific attributes
from the generated images accordingly. As seen in Fig. 7,
the baseline often changes multiple factors (age, gender)
abruptly and inconsistently with � (e.g., when � = �1 on
the right example, it suddenly shows a male-like output),
while ours show disentangled changes.

Fig. 8 further illustrates the linearity of X with images ma-
nipulated in two directions in X . For this, we follow Choi
et al. (2021) to find the editing directions. Comparing the
results of baseline and ours, we observe that our method
better disentangles the concept of age and gender, success-
fully drawing a young male and an old female (marked with
red boxes), where the baseline fails to. This indicates that
the latent space trained with our approach is better disen-
tangled, and they can be easily combined back with a linear
combination.
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● Image inversion and reconstruction
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Figure 7. Linearity. Images generated from a source latent vector x and from slightly perturbed latents, x + ��x with � 2

{�2,�1, 0, 1, 2}, where �x corresponds to the change in age axis.

(a) DDPM (base) (b) Isometric Diffusion (ours)
Figure 8. An illustration of linear combination in X . With ours, age and gender axes are better disentangled. Image generated with the
source latent is marked with black box.

2017; Zheng & Sun, 2019; Zhou & Wei, 2020) have exam-
ined the latent spaces of generative models. Kwon et al.
(2023) found that the internal feature space of U-Net in
diffusion models, H, plays the same role as a semantic la-
tent space. Preechakul et al. (2022) discovered that using a
semantic encoder enables the access to the semantic space
of diffusion models. However, this method utilizes addi-
tional conditioning information, while our work proposes a
method that can directly utilize the latent space without any
condition.

Riemannian Geometry for Generative Models. There
exist some previous works on utilizing Riemannian geom-
etry to understand the latent spaces. (Arvanitidis et al.,
2021) claimed understanding Riemmanian geometry of la-
tent space can improve analysis of representations as well
as generative modeling. (Chen et al., 2020) proposed that
interpreting the latent space as Riemannian manifold and
regularizing the Riemannian metric to be a scaled iden-
tity help VAEs learn a good latent representation. (Lee
et al., 2021) proposed an isometric regularization method
for geometry-preserving latent space coordinates in scale-
free and coordinate invariant form.

6. Summary
In this work, we address a critical challenge in the field of
generative models, particularly disentangling latent space
for diffusion models. Despite the notable progress of dif-
fusion models in generating photorealistic samples, there
persists a substantial gap in comprehending and controlling
their latent spaces. Motivated from isometric representation
learning, Isometric Diffusion introduces a novel regularizer
aimed at obtaining a more disentangled latent space for dif-
fusion models. Through a mapping from latent space to
data manifold being close to isometry, our approach demon-
strates the attainment of a more intuitive and disentangled
latent space for diffusion models, as evidenced both quan-
titatively and qualitatively. We demonstrate advantages of
achieving disentangled and smoother latent space through
extensive experiments of image interpolation, inversion and
linear editing. We believe that our method will open up
new possibilities for practical applications, including video
generation with seamless transitional frames and easier ma-
nipulation of specific features within images, providing a
high degree of control and customization.
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Figure 8. An illustration of linear combination in X . With ours, age and gender axes are better disentangled. Image generated with the
source latent is marked with black box.
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(2023) found that the internal feature space of U-Net in
diffusion models, H, plays the same role as a semantic la-
tent space. Preechakul et al. (2022) discovered that using a
semantic encoder enables the access to the semantic space
of diffusion models. However, this method utilizes addi-
tional conditioning information, while our work proposes a
method that can directly utilize the latent space without any
condition.

Riemannian Geometry for Generative Models. There
exist some previous works on utilizing Riemannian geom-
etry to understand the latent spaces. (Arvanitidis et al.,
2021) claimed understanding Riemmanian geometry of la-
tent space can improve analysis of representations as well
as generative modeling. (Chen et al., 2020) proposed that
interpreting the latent space as Riemannian manifold and
regularizing the Riemannian metric to be a scaled iden-
tity help VAEs learn a good latent representation. (Lee
et al., 2021) proposed an isometric regularization method
for geometry-preserving latent space coordinates in scale-
free and coordinate invariant form.

6. Summary
In this work, we address a critical challenge in the field of
generative models, particularly disentangling latent space
for diffusion models. Despite the notable progress of dif-
fusion models in generating photorealistic samples, there
persists a substantial gap in comprehending and controlling
their latent spaces. Motivated from isometric representation
learning, Isometric Diffusion introduces a novel regularizer
aimed at obtaining a more disentangled latent space for dif-
fusion models. Through a mapping from latent space to
data manifold being close to isometry, our approach demon-
strates the attainment of a more intuitive and disentangled
latent space for diffusion models, as evidenced both quan-
titatively and qualitatively. We demonstrate advantages of
achieving disentangled and smoother latent space through
extensive experiments of image interpolation, inversion and
linear editing. We believe that our method will open up
new possibilities for practical applications, including video
generation with seamless transitional frames and easier ma-
nipulation of specific features within images, providing a
high degree of control and customization.
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Figure 7. Linearity. Images generated from a source latent vector x and from slightly perturbed latents, x + ��x with � 2

{�2,�1, 0, 1, 2}, where �x corresponds to the change in age axis.

(a) DDPM (base) (b) Isometric Diffusion (ours)
Figure 8. An illustration of linear combination in X . With ours, age and gender axes are better disentangled. Image generated with the
source latent is marked with black box.

2017; Zheng & Sun, 2019; Zhou & Wei, 2020) have exam-
ined the latent spaces of generative models. Kwon et al.
(2023) found that the internal feature space of U-Net in
diffusion models, H, plays the same role as a semantic la-
tent space. Preechakul et al. (2022) discovered that using a
semantic encoder enables the access to the semantic space
of diffusion models. However, this method utilizes addi-
tional conditioning information, while our work proposes a
method that can directly utilize the latent space without any
condition.

Riemannian Geometry for Generative Models. There
exist some previous works on utilizing Riemannian geom-
etry to understand the latent spaces. (Arvanitidis et al.,
2021) claimed understanding Riemmanian geometry of la-
tent space can improve analysis of representations as well
as generative modeling. (Chen et al., 2020) proposed that
interpreting the latent space as Riemannian manifold and
regularizing the Riemannian metric to be a scaled iden-
tity help VAEs learn a good latent representation. (Lee
et al., 2021) proposed an isometric regularization method
for geometry-preserving latent space coordinates in scale-
free and coordinate invariant form.

6. Summary
In this work, we address a critical challenge in the field of
generative models, particularly disentangling latent space
for diffusion models. Despite the notable progress of dif-
fusion models in generating photorealistic samples, there
persists a substantial gap in comprehending and controlling
their latent spaces. Motivated from isometric representation
learning, Isometric Diffusion introduces a novel regularizer
aimed at obtaining a more disentangled latent space for dif-
fusion models. Through a mapping from latent space to
data manifold being close to isometry, our approach demon-
strates the attainment of a more intuitive and disentangled
latent space for diffusion models, as evidenced both quan-
titatively and qualitatively. We demonstrate advantages of
achieving disentangled and smoother latent space through
extensive experiments of image interpolation, inversion and
linear editing. We believe that our method will open up
new possibilities for practical applications, including video
generation with seamless transitional frames and easier ma-
nipulation of specific features within images, providing a
high degree of control and customization.
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Figure 5. Image interpolation. Examples of latent traversal between two latents x and x0 with DDPM (Ho et al., 2020), trained on
256 ⇥ 256 CelebA-HQ. We observe unnecessary changes of female ! male in the baseline, while smoother transitions in ours. For
quantitative support, we plot LPIPS distance between each adjacent frames (Blue: Base, Orange: Ours).

Figure 6. Image inversion and reconstruction. Baseline is ADM
(Dhariwal & Nichol, 2021) trained on 256⇥256 CelebA-HQ.

4.4. Ablation Study

Tab. 4 shows the ablation study on the choice of optimal
p and G. With � = 0.5 and G = Gs, we observe the
best performance in FID and PPL. Note that � = 1 denotes
the original training of diffusion model. Also, using an
appropriate Riemannian metric G of the latent space when
calculating the isometric loss turns out to be important. This
result supports our approach of modeling the latent space of

Table 4. Ablation study on �, the ratio of timesteps to skip apply-
ing isometric loss, and G, the choice of Riemannian metric.

� G �iso FID-10k # PPL-50k #

1 - - 15.89 653
0 I 10�4 24.07 447

0.5 I 10�3 30.28 441
0.5 I 10�4 16.60 619

0.5 Gs 10�4 16.18 455

diffusion model as a Riemannian manifold S
n�1 is indeed

reasonable.

5. Related Work
Latent Space of Generative Models. On Generative Adver-
sarial Networks (GANs) (Goodfellow et al., 2014; Radford
et al., 2015; Zhu et al., 2017; Choi et al., 2018; Ramesh et al.,
2018; Härkönen et al., 2020; Abdal et al., 2021), StyleGAN
(Karras et al., 2019) is a pioneering work on latent space
analysis and improvement. In StyleGANv2 (Karras et al.,
2020), a path length regularizer guides the generator to learn
an isometric mapping from the latent space to the image
space. Recently, additional studies on GANs (Shen et al.,
2020a;b; Shen & Zhou, 2021) and VAEs (Hadjeres et al.,
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● Linearity

●Due to the geodesic-preserving property, if the encoder 𝑒& becomes an scaled isometry, 
moving along the geodesics in 𝒳 corresponds to moving along geodesics in  ℋ

Motivation

Isometric Regularizer for Diffusion Models

Semantic Latent Space of Diffusion Models
●Kwon et al.[4] proposed the bottleneck feature space ℋ as the semantic 

space of diffusion models
● Editing visual attributes of a given image is possible using ℋ
● If we can move along the geodesic of ℋ, disentangled image editing 

will be possible.

StyleGAN2[1] StyleGAN3[2] DDPM (GENIE[3])

● This often leads to suboptimal result in downstream tasks such as 
image interpolation, inversion, or editing.

●We achieve effectively disentangled latent space of diffusion models 
without compromising the quality of generated images.
●We propose Isometric Diffusion, a diffusion model that achieves a 

geometrically sound latent space by regularizing the mapping from the 
latent space to ℋ-space to be isometric.
●We verify the effectiveness of our proposed method through 

quantitative and qualitative evaluations on various applications.
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Figure 5. Image interpolation. Examples of latent traversal between two latents x and x0 with DDPM (Ho et al., 2020), trained on
256 ⇥ 256 CelebA-HQ. We observe unnecessary changes of female ! male in the baseline, while smoother transitions in ours. For
quantitative support, we plot LPIPS distance between each adjacent frames (Blue: Base, Orange: Ours).
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Figure 6. Image inversion and reconstruction. Baseline is ADM
(Dhariwal & Nichol, 2021) trained on 256⇥256 CelebA-HQ.

5. Related Work
Latent Space of Generative Models. On Generative Adver-
sarial Networks (GANs) (Goodfellow et al., 2014; Radford
et al., 2015; Zhu et al., 2017; Choi et al., 2018; Ramesh et al.,
2019; Härkönen et al., 2020; Abdal et al., 2021), StyleGAN
(Karras et al., 2019) is a pioneering work on latent space
analysis and improvement. In StyleGANv2 (Karras et al.,

Table 4. Ablation study on �, the ratio of timesteps to skip apply-
ing isometric loss, and G, the choice of Riemannian metric.

� G �iso FID-10k # PPL-50k #

1 - - 15.89 653
0 I 10�4 24.07 447

0.5 I 10�3 30.28 441
0.5 I 10�4 16.60 619

0.5 Gs 10�4 16.18 455

2020), a path length regularizer guides the generator to learn
an isometric mapping from the latent space to the image
space. Recently, additional studies on GANs (Shen et al.,
2020a;b; Shen & Zhou, 2021) and VAEs (Hadjeres et al.,
2017; Zheng & Sun, 2019; Zhou & Wei, 2020) have exam-
ined the latent spaces of generative models. Kwon et al.
(2023) found that the internal feature space of U-Net in
diffusion models, H, plays the same role as a semantic la-
tent space. Preechakul et al. (2022) discovered that using a
semantic encoder enables the access to the semantic space
of diffusion models. However, this method utilizes addi-
tional conditioning information, while our work proposes a
method that can directly utilize the latent space without any
condition.
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Figure VIII. Additional examples of latent traversal between two images with DDPM and ours trained with isometric regularizer,
trained on 256⇥ 256 LSUN-Church.
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Equivalently, f is a scaled isometry if and only if
J
>
f
HJfG

�1 = cI where c 2 R is a global constant. As
its special case, f is called a strict isometry when c = 1,
where a transformation between two metric spaces globally
preserves distances and angles. Scaled isometry allows the
constant c to vary, preserving only the scaled distances and
angles. This relaxation makes it easier to optimize a function
to preserve geodesic with less restrictions, hence leading to
easier and more stable training than strict isometry.

In our problem formulation, M1 = S
n�1 (X ), M2 = Rm

(H), and H(z0) = Im, as introduced in Sec. 3.1. Al-
though evaluation of J>

f
HJfG

�1 is coordinate-invariant,
our choice of stereographic coordinates is computationally
advantageous, as its Riemannian metric in Eq. (3) is propor-
tional to the identity matrix (see Sec. 3.4 for details).

Properties. To motivate the use of isometric mapping to
learn disentangled representation, we introduce two impor-
tant properties that isometry satisfies: geodesic-preserving
and angle-preserving. We follow the definition of disentan-
glement from Bengio et al. (2013) and Higgins et al. (2017),
which argue that a disentangled representation can be de-
fined as one where a single latent unit is sensitive solely to
changes in a single generative factor, while being invariant
to changes in other factors.

1) Geodesic-preserving Property. Distance-preserving prop-
erty of isometry naturally guarantees geodesic-preserving:

argmin
�(t)

Z 1

0

p
�̇(t)>G(�(t))�̇(t)dt (5)

= argmin
�(t)

Z 1

0

p
�̇(t)>J(�(t))>H(f(�(t)))J(�(t))�̇(t)dt,

for an arbitrary trajectory � : [0, 1] ! Rn in local coordi-
nates of M1 with fixed endpoints (�(0) = x0, �(1) = x1),
where x0,x1 2 Rn are constant vectors and �̇(t) = d�

dt
(t).

This property induces equal sensitivity of each latent basis
vector; a fixed-size step in the latent space results in equal
amount of change in the semantic space, which is related to
obtaining a smooth latent space.

2) Angle-preserving Property. This follows from the fact
that if G(x) = cJ

>(x)H(f(x))J(x), then

cos(✓1) =
hv1, v2iM1

kv1kM1kv2kM1

=
hdfp(v1), dfp(v2)iM2

kdfp(v1)kM2kdfp(v2)kM2

= cos(✓2), (6)

where hv1, v2iM1 = ẋ1(0)>Gẋ2(0), hdfp(v1), dfp(v2)iM2

= ẏ1(0)>Hẏ2(0) = ẋ1(0)>J>
HJẋ2(0), and dfp is the

pushforward at p. x1(t), x2(t), y1(t), y2(t) are the trajecto-
ries on manifolds M1,M2 such that x1(0) = p, x2(0) = p,
y1(0) = f(p), y2(0) = f(p), and ẋ = dx

dt
(t).

Recalling the semantic space H discovered by Kwon et al.
(2023), we pose that an orthogonal basis corresponding to
meaningful visual attributes exists in the semantic space.
Due to the angle-preserving property, if the latent space X

is mapped to H with an isometry, there exists orthogonal
basis of X which is mapped to an orthogonal basis of H
(assuming existence of the inverse). This implies that a
vector corresponding to a specific attribute is mapped to
a single latent vector, orthogonal to other latent vectors
corresponding to other factors. This is related to the desired
property of a disentangled latent space.

3.3. Isometry Loss for Diffusion Models

Isometry Loss. To sum up, we can encourage the mapping
f : X ! H to preserve geodesics and angles by regularizing
R(z) ⌘ Jf (z)>H(f(z))Jf (z)G�1(z) = cI , for some
c 2 R. It can be achieved by minimizing the following
isometry loss (Lee et al., 2021):

Liso(f, t) =
Ext⇠P (xt)[Tr(R

2(zt))]

Ext⇠P (xt)[Tr(R(zt))]2
(7)

=
Ext⇠P (xt)Ev⇠N (0,I)[v

>
R(zt)>R(zt)v]

Ext⇠P (xt)Ev⇠N (0,I)[v>R(zt)v]2
,

where P (xt) is the noise probability distribution at timestep
t, and zt = ⇧n�1(xt). The second equality holds due to
the stochastic trace estimator (Hutchinson, 1989), where
v 2 Rn�1 is a random vector such that E[vv>] = I .

Applying to Diffusion Models. Applying the isometry reg-
ularizer directly to the generating path of diffusion models
is intractable, due to its iterative nature of sample genera-
tion. Specifically, calculating R(z) in Eq. (7) requires the
Jacobian of f = f0 � · · ·�fN�1, where fi is the i-th reverse
step and N is the number of reverse steps, resulting in a
long chain of function compositions.

Motivated from the training method of diffusion models,
we apply isometric regularizer at each time step. To guide
a mapping from XT to X0 to be geodesic-preserving, we
regularize each timestep of the iterative sequence; that is,
the mapping between Xt and Xt�1 for all t 2 {T, ..., 1}.
Instead of regularizing all steps, we may selectively ap-
ply it. For time steps closer to T , samples are closer to
a Gaussian, so our assumption may reasonably hold. For
time steps closer to 0, samples are not sufficiently perturbed
yet and thus they would follow some intermediate distribu-
tion between the Gaussian and the original data distribution.
Therefore, applying isometry loss to all timesteps can be
sub-optimal and we let the portion of timesteps to apply it
as a hyperparameter.

Also, to address the entanglement problem, we need to
consider the semantic space of images rather than the pixel
space. Hence, we assume the semantic gap between images

4

• PPL, LS – Smoothness of latent space, entanglement metric

Our Contributions


