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Graph Neural Networks
e Graph Neural Networks operate on the Message Passing Neural Networks (MPNNSs)
paradigm. This paradigm involves iteratively applying AGGREGATE and UPDATE

functions to enhance node representations. The process updates the representations
by utilizing the information contained in the neighbors.

m® = AGGREGATE"”’ (h;f—”, (h~V]j € /V(i)})
h(*) = UPDATE® (h(¢~),m(®)

e Local operation => it takes k layers to exchange information between two
nodes at a distance of k => difficulties to fetch long-term information.

Increasing the number of layers is not a good idea because it causes :

- Over-smoothing => As the number of layers increases, the message passing becomes
excessively intensive =>the features of the nodes gradually become more similar.

How can you avoid negative-curvature edges while avoiding dense areas in the graph?
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Motivation

Applying a Delaunay triangulation allows to maximize the nhumber of triangle in the graph while

ensuring a maximum clique size of 3.

Delaunay Graph

While the majority of the rewiring methods modify the original graph structure, we propose a complete rebuild of

the graph, based only on the features of the nodes, ignoring the edges of the original graph. We choose to
introduce the new edges of the rewired graph by applying a Delaunay triangulation on the node features.

Delaunay Triangulation [4]

A Delaunay triangulation, denoted as DT(P), for a set P of points in the d-dimensional Euclidean space, is a
triangulation where no point in P resides within the circum-hypersphere of any d-simplex in DT(P).
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Experiments
Base (GCN) DIGL FA SRDF FOSR BORF GTR DR
Cham. 6535£0.54 5482 +0.48 2634 £0.61 63.08 £0.37 67.98 £0.40 6535 +£0.51 68.03 £0.61 74.28 £0.48
Squir. 51.304+0.38  40.53 +£0.29 2288 +£0.42 49.11+0.28 52.63 +0.30 > 24h 53.32 +£0.44  65.25 +0.26
Actor 30.024+0.22  26.75 +£0.23  26.03+0.30 31.85 +£0.22 29.264+0.23 31.36 £0.27 31.08 £0.28 41.36 +0.20
Texas 56.19 £1.61 4595 +4+1.58 5593 £1.76 59.79 £1.71 61.354+1.25 5630+£1.61 57.18+£1.64 70.46 +1.61
Wisc.  55.1241.51  46.90 £1.28 46.77+1.48 5849 +£1.23 55.60 £1.25 55.37 +£1.47 57.22+4+1.50 70.98+1.50
Corn. 4478 +£1.45 4446 +1.37 4533+1.556 47.73 £1.51 45.11 £1.47 46.81 £1.56 47.57 £1.52 67.22 +£1.48
R-emp. 51.66 £0.17 53.93 +0.14 OOM 5253 £0.13 5238 £0.21 58.58 £0.14 53.31 £0.23 61.99 +0.14
Cora 8773 £0.25 8831 £0.29 2986 £0.28 8773 £0.31 8794 £0.26 87.72+£0.27 87.86 £0.28 91.39 £0.24
Citeseer 76.01 £0.25 76.22 +£0.34 2231 £0.34 7643 £0.32 76.34 £0.27 76.49 +£0.28 76.12 +£0.28 81.14 +0.34
Pubmed 88.20 +0.10 88.51 +0.10 OOM 88.16 +0.11  88.42 +0.10 88.34 +0.10 88.44 +0.10 88.69 +0.10
Base (GAT) DIGL FA SRDF FOSR BORF GTR DR

Cham. 65.07 £0.41 56.34 £0.43 27.11 £0.56 63.154+0.44 66.61 +£0.45 66.92 +0.51 6597 £0.54 72.04 +0.37
Squi. 50.87 £0.56 41.65 £0.68 21.49 £0.71 50.36 £0.38 52.02 +£0.43 > 24h 52.72 £0.48 61.47 £+0.29
Actor 2992 4+0.23 31.224+0.47 28.20+0.51 3147 +0.25 29.73 £0.24 29.64 £0.33 30.13 £0.31 40.25 £+0.23
Texas 56.84 +1.61 4649 +1.63 56.17£1.71 5745+1.62 61.85+1.41 5668+149 5788 +1.65 74.30+1.38
Wisce. 5358 £1.39 46.29 £1.47 4695 £1.52  56.80 +£1.29  54.064+1.27 5539+ 123 56.53+1.64 7433 +1.24
Cornell 46.05+1.49 44054144 4460+1.74 48.03 +£1.66 4830+1.61 4857+ 156 48.70+1.63 68.03 +1.62
R-Emp. 49.23 +£0.33 53.89 +0.16 OOM 50.75 £0.17 4954 £0.31 51.03 +£0.26 50.60 £0.24 61.80 +0.16
Cora 87.65+0.24 88.31+0.29 30.44+0.26 88.11 £0.28 88.13 +£0.27 87.724+0.27 87.944+0.23  91.37 £0.23
Citeseer 76.20 £0.27 76.22 £0.34 23.11 £0.32  76.26 £0.31 7594+0.32 7644 +£0.44 76.35 £0.28  81.61 +£0.25
Pubmed 87.39 £0.11 87.96 +0.10 OOM 87.44 £0.12 87.56 £0.11 87.61 +£0.12 87.31 £0.12 89.14 +0.09

Original Graph ~ Vertex

- Over-squashing => At each stage, node representations are aggregated with others Features: H,

Delaunay Graph properties
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Delaunav Rewiring is highly scalable for
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O The structural properties of the Delaunay graph allow for good information diffusion
by reducing Over-Smoothing and Over-Squashing.

Size of largest clique is 3.
@) Avoid strongly positively curved edges
=> Mitigate over-smoothing

Avoid strongly negatively curved
edges=> Mitigate over-squashing

Curvature on graph

v/,

O Our extensive experimentation conducted on homophobic and heterophillic graphs

As for a manifold, the notion of curvature is a good way to caraterize the local

| Type Dataset #Nodes #C | #0-Edges #O-Homo | #D-Edges # D-homo | # Homo gain demonstrates that our method consistently outperforms existing graph rewiring
behavior of a graph. methods.
Squirrel 5021 5 217073 0.22 31170 0.59 168%
Chameleon 2277 5 36101 0.25 13630 0.69 176%
Nl ¢;=4—d;—d;+3m Texas 181 5 | 309 0.06 1072 0.63 950% References
Heterophilic  Wisconsin 251 5 499 0.06 1470 0.55 817% [1] Samal, A, Sreejith, R. P, Gu, J., Liu, S., Saucan, E., & Jost, J. (2018). Comparative
o o m m (Fmax) —1 Cornell . 181 5 295 0.11 1064 0.67 509% analysis of two discretizations of Ricci curvature for complex networks. Scientific reports,.
[2] ¢i=—F*+—F— 2+2 — + + (y; + }/]) Roman-empire 22662 18 32927 0.06 135922 0.58 1060% , . , , ,
d. . . Actor 7600 5 33544 0.24 45520 0.40 33% [2] Topping, J., Di Giovanni, F., Chamberlain, B. P., Dong, X., & Bronstein, M. M. (2021).
l J max {dia d] } min {dia d]} max {dia d]} Understanding over-squashing and bottlenecks on graphs via curvature.
’ Citeseer 3312 6 4715 0.71 19923 0.78 10% |
where m is the number of triangles that contain ¢;; Homophilic ~ Cora 2708 7 | 5429 0.83 16214 0.88 6% [3] Nguyen, K., Hieu, N. M., Nguyen, V. D., Ho, N., Osher, 5., & Nguyen, T.M. (2023, July).
Pubmed 19 717 3 44348 0.77 118192 0.86 9% Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In

International Conference on Machine Learning (pp. 25956-25979). PMLR.

[4] Boris Delaunay et al. Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie
Matematicheskii i Estestvennyka Nauk, 7(793-800):1-2, 1934.

[3] Positive curvature => dense areas=> Accentuates Over-Smoothing

0 Good degree distribution @ Improve graph homophily

[2] Negatives curvature => Bottleneck => Accentuates Over-Squashing
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