Smoothness Adaptive Hypothesis Transfer Learning

Haotian Lin¹ Matthew Reimherr¹

¹Pennsylvania State University

ICML 2024

KO K K Ø K K E K K E K Y S K Y K K K K K

Background

Problem Setting

▶ Nonparametric regression models:

Target:
$$
y_{T,i} = f_T(x_{T,i}) + \epsilon_{T,i}, \quad i = 1, ..., n_T,
$$

Source: $y_{S,i} = f_S(x_{S,i}) + \epsilon_{S,i}, \quad i = 1, ..., n_S.$

- \blacktriangleright Model Shift: $P(x_S) = P(x_T)$ but $P(y_T | x_T) \neq P(y_S | x_S)$.
- ▶ Source function: $f_S \in H^{m_0}$, a Sobolev space of order $m_0 \geq d/2$.
- ▶ Offset function: $f_{\delta} = f_{\overline{I}} f_{\overline{S}} \in H^m$ for some $m > m_0$.

Hypothesis Transfer Learning (HTL)

Transferring knowledge from a source domain to a target domain by using the trained source model (hypothesis) while learning the target model.

KOD KOD KED KED E VAN

Background: Learning Framework

Kernel-based HTL

HTL and kernel methods are connected via offset/bias regularization.

- ▶ **Input:** Source and target dataset, employ kernel *K*.
- ▶ Phase 1: Source hypothesis training

$$
\hat{f}_S = \underset{f \in \mathcal{H}_K}{\text{argmin}} \frac{1}{n_S} \sum_{i=1}^{n_S} (y_{S,i} - f(x_{S,i}))^2 + \lambda_1 \|f\|_K^2
$$

▶ Phase 2: Transfer via offset regularization

$$
\hat{f}_{\delta} = \underset{f \in \mathcal{H}_K}{\text{argmin}} \frac{1}{n_T} \sum_{i=1}^{n_T} (y_{T,i} - \hat{f}_S(x_{T,i}) - f(x_{T,i}))^2 + \lambda_2 ||f||_K^2
$$

▶ **Output:**

$$
\hat{f}_T = \hat{f}_S + \hat{f}_\delta
$$

KOD KOD KED KED E VAN

Background: Limitation

Limitation in existing works

- ▶ **Smoothness-agnostic:** Without knowing the relative smoothness of the *f_S* and f_{δ} , using the same kernel regularization in both phases, which against the "simpler" offset principle that leads to the success of HTL.
- ▶ **Non-adaptive:** Rate optimality of this two-phase learning framework relies on knowing smoothness m_0 and m and employing the "right" kernels in both phases.

KOD KOD KED KED E VAN

⇒ Question:

How to develop an HTL algorithm so that f^{*S*} *and f*^{δ} *can be learned adaptively and optimally with varying smoothness?*

Potential Solution

KRR Revisited

 \blacktriangleright For a kernel K, and the induced RKHS \mathcal{H}_K , KRR estimate is given as

$$
\hat{f} = \underset{f \in \mathcal{H}_K}{\text{argmin}} \frac{1}{n} \sum_{i=1}^n (y_i - f(x_i))^2 + \lambda ||f||^2_{\mathcal{H}_K}.
$$

 \blacktriangleright Assume f_T is in $H^{m₀}$, the minimax convergence rate is

$$
\|\hat{f}-f_{\mathcal{T}}\|_{L_2}^2=\int_{\mathcal{X}}(\hat{f}_0(x)-f_0(x))^2\ dx=\mathcal{O}_{\mathbb{P}}(n^{-\frac{2m_0}{2m_0+\sigma}}).
$$

KO KKO K S A B K S B K V S A V K S B K S B K S A V S B K S B K S B K S B K S B K S B K S B K S B K S B K S B K

▶ If \mathcal{H}_K coincides with H^{m_0} and $\lambda \asymp n^{-\frac{2m_0}{2m_0+d}}$, the minimax rate is attainable.

Problem: How to choose the kernel K to achieve this rate without knowing m_0 ?

Potential Solution

Robustness of Employed Kernels in KRR

Proposition 1 Let \hat{f}_T be the target-only KRR estimator and *K* as the imposed kernel,

1. (Misspecified Kernel) If the *K* is the Matérn kernel and its induced space concides with $H^{m_0'}$. Furthermore, given $\lambda \asymp n^{-2m_0'/(2m_0+d)}$ and $\gamma = \min\{2, m_0/m_0'\}$, then

$$
\|\hat{f}_T - f_T\|_{L_2}^2 = \mathcal{O}_{\mathbb{P}}\Big(n_T^{-2\gamma m_0'/(2\gamma m_0' + d)}\Big),
$$

which achieves minimax optimal rate $n_T^{-2m_0/(2m_0+d)}$ when $m_0 \leq 2m_0'.$

2. (Saturation Effect) For $m'_0 < m_0/2$ and any choice of parameter $\lambda(n_T)$ satisfying that $\lambda(n_T) \rightarrow 0$, we have

$$
\|\hat{f}_T - f_T\|_{L_2}^2 = \Omega_{\mathbb{P}}\Big(n_T^{-4m'_0/(4m'_0+d)}\Big).
$$

KID K@ KKEX KEX E 1090

Potential Solution

Solution via Misspecified kernel

- ▶ **Possibility**: Imposed misspecified Matérn kernels to achieve rate-optimal HTL.
- **Drawback**: End up choosing a less smooth kernel $(m_0 > 2m'_0)$ and never being $\frac{1}{2}$ able to attain the minimax rate because of the saturation effect.

KORKARYKERKE PORCH

▶ Demand for a kernel with a more robust misspecified property.

Table of Contents

[Target-Only KRR with Gaussian Kernels](#page-7-0)

[Smoothness Adaptive HTL](#page-11-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q @

Target-Only KRR with Gaussian Kernels

Motivation

- 1. Better to use "over-smooth" misspecified Matérn kernels.
- 2. The Gaussian kernel is the limit of Matérn kernels.

Theorem (Non-adaptive Rate)

Let the imposed kernel, K , be the Gaussian kernel with fixed bandwidth and ˆ*f be the KRR estimator learned from target dataset* {(*xⁱ* , *yⁱ*)} *n i*=1 *. Under certain standard* $\textit{Assumptions, if } \textit{log}(1/\lambda) \asymp n^{\frac{2}{2m_0+d}}$, then the following statement holds,

$$
\|\hat{f}-f_{\mathcal{T}}\|_{L_2}^2=\mathcal{O}_{\mathbb{P}}(n^{-\frac{2m_0}{2m_0+d}}).
$$

Key takeaway:

▶ Attain **minimax optimal** convergence rate with fixed bandwidth Gaussian kernels.

KORKAR KERKER E VOOR

• Gaussian kernel smooths a lot, so λ **has to decay exponentially; Misspecified** Matérn kernel requires λ to scale **polynomially**.

Target-Only KRR with Gaussian Kernels

Table: Comparison of generalization error convergence rate (non-adaptive) between our result and the prior literature. Here, we assume the mean function *f*⁰ belongs to Sobolev space *H ^m*⁰ , imposed RKHS means the RKHS that \hat{t} belongs to. " $-$ " in column γ means the bandwidth is fixed during training and does not have an optimal order in n . \mathcal{H}_K means the RKHS associated with the Gaussian kernel while $H^{m_0'}$ means the Sobolev space with smoothness order m_0' .

.
◆ ロ ▶ ◆ @ ▶ ◆ 경 ▶ → 경 ▶ │ 경 │ ◇ 9,9,0°

Target-Only KRR with Gaussian Kernels

Adaptive process via Training/Validation

Construct a smoothness candidate set $M = \{m_1, \dots, m_N\}$ with $m_j - m_{j-1} \asymp 1/\log n_{\overline{I}}$ and divide the target dataset into $\mathcal{D}_{\overline{I},1}$ and $\mathcal{D}_{\overline{I},2}$.

- 1. For each $m \in \mathcal{M}$, obtain non-adaptive \hat{f}_{λ_m} by KRR with $\mathcal{D}_{\mathcal{T},1}$.
- 2. Obtain the adaptive $\hat{f}_{\lambda_{\hat{m}}}$ by minimizing empirical L_2 error on ${\cal D}_{{\cal T},2}$, i.e.

$$
\hat{f}_{\lambda_{\hat{m}}} = \underset{m \in \mathcal{M}}{\text{argmin}} \left\{ \frac{1}{|\mathcal{D}_{\mathcal{T},2}|} \sum_{(y_i,x_i) \in \mathcal{D}_{\mathcal{T},2}} (y_i - \hat{f}_{\lambda_m}(x_i))^2 \right\}.
$$

Theorem (Adaptive Rate)

For the adaptive estimator constructed via training/validation method, one has

$$
\|\hat{f}_{\lambda_{\hat{m}}} - f_{\mathcal{T}}\|_{L_2}^2 = \mathcal{O}_{\mathbb{P}}\left(\left(\frac{n_{\mathcal{T}}}{\log n_{\mathcal{T}}}\right)^{-\frac{2m_0}{2m_0+d}}\right).
$$

KORK ERKER ADAM ADA

Table of Contents

[Target-Only KRR with Gaussian Kernels](#page-7-0)

[Smoothness Adaptive HTL](#page-11-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Algorithm 1 Smoothess Adaptive Hypothesis Transfer Learning

1. Let the smoothness candidate set for f_S as $M_S = \{\frac{Q_1}{\log(n_S)}, \dots, \frac{Q_1 N_1}{\log(n_S)}\}$ and the smoothness candidate set for f_δ as $\mathcal{M}_\delta = \{\frac{Q_2}{\log(n_T)}, \cdots, \frac{Q_2 N_2}{\log(n_T)}\}$ for some fixed positive number Q_1 , Q_2 and integer N_1 , N_2 .

KOD KOD KED KED E VOOR

2. Conduct the two-phase KRR-based HTL with each phase follows the training/validation process with M_S and M_δ .

Optimality of SATL

Define the parameter space as,

$$
\Theta(h, R, m_0, m) = \{(\rho_T, \rho_S) : ||f_S||_{H^{m_0}} \leq R, ||f_{\delta}||_{H^m} \leq h\}.
$$

Theorem (Optimality of SATL)

Let C_l *and* C_l *be some constants independent of* n_S *, n_T, R_{<i>i*}</sub>, *h_i and* δ *. For* $\delta \in (0, 1)$ *, with probability* $1 - \delta$ *, we have*

1. *(Lower bound)*

$$
\inf_{\tilde{f}}\sup_{\Theta(h,R,m_0,m)}\mathbb{P}\left\{\|\tilde{f}-f_T\|_{L_2}^2\geq C_L\delta R^2\left(n_S^{-\frac{2m_0}{2m_0+d}}+n_T^{-\frac{2m}{2m+d}}\xi_L\right)\right\}\geq 1-\delta,
$$

where $\xi_L \propto h^2/R^2$.

2. *(Upper bound)*

$$
\|\hat{f}_\mathcal{T}-f_\mathcal{T}\|_{L_2}^2 \leq C_U \left(\log \frac{8}{\delta}\right)^2 \left(R^2+\sigma_S^2\right) \left\{ \left(\frac{n_S}{\log n_S}\right)^{-\frac{2m_0}{2m_0+d}} + \left(\frac{n_\mathcal{T}}{\log n_\mathcal{T}}\right)^{-\frac{2m}{2m+d}} \xi_U \right\},
$$

where $\xi_U \propto (h^2 + \sigma_T^2)/(R^2 + \sigma_S^2)$ *.*

KORKARYKERKE PORCH

Transfer Dynamic and Efficacy

▶ Upper bound of target-only learning:

$$
\left(\frac{n_T}{\log n_T}\right)^{-\frac{2m_0}{2m_0+d}}
$$

▶ Upper bound of SATL:

$$
\underbrace{\left(\frac{n_S}{\log n_S}\right)^{-\frac{2m_0}{2m_0+d}}}_{\text{rough estimation error}} + \underbrace{\left(\frac{n_T}{\log n_T}\right)^{-\frac{2m}{2m+d}}}_{\text{offset estimation error}} \xi_U
$$

- \blacktriangleright Jointly determine by source sample size n_S and factor ξ_U .
- ▶ Compared to the target-only KRR rate, SATL produces a faster rate with small ^ξ*^U* (high similarity) and large *nS*.

KORKARYKERKE PORCH

Comparing to Existing Bounds

▶ Ours:

$$
\left(\frac{n_S}{\log n_S}\right)^{-\frac{2m_0}{2m_0+d}} + \left(\frac{n_T}{\log n_T}\right)^{-\frac{2m}{2m+d}} \xi_U
$$

 \blacktriangleright Existing works via offset TL:

$$
(n_S)^{-\frac{2m_0}{2m_0+d}}+(n_T)^{-\frac{2m}{2m+d}}h^2
$$

- \blacktriangleright The logarithmic factor due to adaptivity.
- ▶ Our bound indicates the transfer efficacy via the offset TL not singly depends on the margin of dissimilarity measure *h*, but jointly depends on the ratio of the signal strength between offset and source models (a.k.a. the angle).

Figure: Geometric illustration for how ξ*^U* will affect the HTL.

KORKARA KERKER DAGA

Experiments: Target-only KRR

Construct f_T from Gaussian process s.t. $f_T \in H^{m_0}$.

Figure: Emiprical and theoretical error decay curves for different m_0 .

KORKARYKERKE PORCH

Experiments: SATL

Figure: Generalization error for different *m* and *h*.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

Summary of Contribution

Kernel Ridge Regression

- \triangleright When the true function lies in a Sobolev space H^{m_0} , we rigorously prove that employing fixed bandwidth Gaussian kernels in KRR attains the minimax optimal rate.
- ▶ The optimal decay rate for λ is λ ≍ exp{−*Cn* 2 ²*m*0+*^d* }, which decays exponentially in *n*.

Transfer Learning

- ▶ We present a smoothness-adaptive and rate-optimal hypothesis transfer learning algorithm for nonparametric regression, called SATL.
	- ▶ Optimality: Employing Gaussian kernels to avoid saturation and guarantee the possibility of optimality.

KORK ERKEY EL POLO

▶ Adaptivity: Training and validation process to achieve adaptive rate.

Reference I

Wenjia Wang and Bing-Yi Jing.

Gaussian process regression: Optimality, robustness, and relationship with kernel ridge regression.

Journal of Machine Learning Research, 23(193):1–67, 2022.

Haobo Zhang, Yicheng Li, Weihao Lu, and Qian Lin. On the optimality of misspecified kernel ridge regression. In *International Conference on Machine Learning*, pages 41331–41353. PMLR, 2023.

Mona Eberts and Ingo Steinwart. Optimal regression rates for SVMs using Gaussian kernels. *Electronic Journal of Statistics*, 7(none):1 – 42, 2013.

Thomas Hamm and Ingo Steinwart.

Adaptive learning rates for support vector machines working on data with low intrinsic dimension.

KORK ERKER ADAM ADA

The Annals of Statistics, 49(6):3153–3180, 2021.