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Background

Problem Setting
▶ Nonparametric regression models:

Target: yT ,i = fT (xT ,i ) + ϵT ,i , i = 1, . . . , nT ,

Source: yS,i = fS(xS,i ) + ϵS,i , i = 1, . . . , nS .

▶ Model Shift: P(xS) = P(xT ) but P(yT |xT ) ̸= P(yS |xS).
▶ Source function: fS ∈ Hm0 , a Sobolev space of order m0 ≥ d/2.
▶ Offset function: fδ = fT − fS ∈ Hm for some m ≥ m0.

Hypothesis Transfer Learning (HTL)
Transferring knowledge from a source domain to a target domain by using the trained
source model (hypothesis) while learning the target model.



Background: Learning Framework

Kernel-based HTL
HTL and kernel methods are connected via offset/bias regularization.
▶ Input: Source and target dataset, employ kernel K .
▶ Phase 1: Source hypothesis training

f̂S = argmin
f∈HK

1
nS

nS∑
i=1

(yS,i − f (xS,i ))
2 + λ1∥f∥2

K

▶ Phase 2: Transfer via offset regularization

f̂δ = argmin
f∈HK

1
nT

nT∑
i=1

(yT ,i − f̂S(xT ,i )− f (xT ,i ))
2 + λ2∥f∥2

K

▶ Output:
f̂T = f̂S + f̂δ



Background: Limitation

Limitation in existing works
▶ Smoothness-agnostic: Without knowing the relative smoothness of the fS and

fδ , using the same kernel regularization in both phases, which against the
“simpler” offset principle that leads to the success of HTL.

▶ Non-adaptive: Rate optimality of this two-phase learning framework relies on
knowing smoothness m0 and m and employing the “right” kernels in both phases.

⇒ Question:
How to develop an HTL algorithm so that fS and fδ can be learned adaptively and
optimally with varying smoothness?



Potential Solution

KRR Revisited
▶ For a kernel K , and the induced RKHS HK , KRR estimate is given as

f̂ = argmin
f∈HK

1
n

n∑
i=1

(yi − f (xi ))
2 + λ∥f∥2

HK
.

▶ Assume fT is in Hm0 , the minimax convergence rate is

∥f̂ − fT ∥2
L2

=

∫
X
(f̂0(x)− f0(x))2 dx = OP(n

− 2m0
2m0+d ).

▶ If HK coincides with Hm0 and λ ≍ n
− 2m0

2m0+d , the minimax rate is attainable.

Problem: How to choose the kernel K to achieve this rate without knowing m0?



Potential Solution

Robustness of Employed Kernels in KRR
Proposition 1 Let f̂T be the target-only KRR estimator and K as the imposed kernel,

1. (Misspecified Kernel) If the K is the Matérn kernel and its induced space concides
with Hm′

0 . Furthermore, given λ ≍ n−2m′
0/(2m0+d) and γ = min{2,m0/m′

0} , then

∥f̂T − fT ∥2
L2

= OP
(

n
−2γm′

0/(2γm′
0+d)

T

)
,

which achieves minimax optimal rate n−2m0/(2m0+d)
T when m0 ≤ 2m′

0.

2. (Saturation Effect) For m′
0 < m0/2 and any choice of parameter λ(nT ) satisfying

that λ(nT ) → 0, we have

∥f̂T − fT ∥2
L2

= ΩP
(

n
−4m′

0/(4m′
0+d)

T

)
.



Potential Solution

Solution via Misspecified kernel
▶ Possibility: Imposed misspecified Matérn kernels to achieve rate-optimal HTL.
▶ Drawback: End up choosing a less smooth kernel (m0 > 2m′

0) and never being
able to attain the minimax rate because of the saturation effect.

▶ Demand for a kernel with a more robust misspecified property.
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Target-Only KRR with Gaussian Kernels

Motivation
1. Better to use “over-smooth” misspecified Matérn kernels.

2. The Gaussian kernel is the limit of Matérn kernels.

Theorem (Non-adaptive Rate)
Let the imposed kernel, K , be the Gaussian kernel with fixed bandwidth and f̂ be the
KRR estimator learned from target dataset {(xi , yi )}n

i=1. Under certain standard

Assumptions, if log(1/λ) ≍ n
2

2m0+d , then the following statement holds,

∥f̂ − fT ∥2
L2

= OP(n
− 2m0

2m0+d ).

Key takeaway:
▶ Attain minimax optimal convergence rate with fixed bandwidth Gaussian kernels.
▶ Gaussian kernel smooths a lot, so λ has to decay exponentially; Misspecified

Matérn kernel requires λ to scale polynomially.



Target-Only KRR with Gaussian Kernels

Table: Comparison of generalization error convergence rate (non-adaptive) between our result and
the prior literature. Here, we assume the mean function f0 belongs to Sobolev space Hm0 , imposed
RKHS means the RKHS that f̂ belongs to. “−” in column γ means the bandwidth is fixed during
training and does not have an optimal order in n. HK means the RKHS associated with the
Gaussian kernel while Hm′

0 means the Sobolev space with smoothness order m′
0.

Paper Imposed RKHS Rate λ γ

[1], [2] Hm′
0 ,m′

0 >
m0
2 n

− 2m0
2m0+d n

−
2m′

0
2m0+d −

[3] HK n
− 2m0

2m0+d +η
, ∀η > 0 n−1 n

− 1
2m0+d

[4] HK n
− 2m0

2m0+d logd+1(n) n−1 n
− 1

2m0+d

This work HK n
− 2m0

2m0+d exp{−Cn
2

2m0+d } −



Target-Only KRR with Gaussian Kernels

Adaptive process via Training/Validation
Construct a smoothness candidate set M = {m1, · · · ,mN} with
mj − mj−1 ≍ 1/ log nT and divide the target dataset into DT ,1 and DT ,2.

1. For each m ∈ M, obtain non-adaptive f̂λm by KRR with DT ,1.

2. Obtain the adaptive f̂λm̂
by minimizing empirical L2 error on DT ,2, i.e.

f̂λm̂
= argmin

m∈M

 1
|DT ,2|

∑
(yi ,xi )∈DT ,2

(yi − f̂λm (xi ))
2

 .

Theorem (Adaptive Rate)
For the adaptive estimator constructed via training/validation method, one has

∥f̂λm̂
− fT ∥2

L2
= OP

( nT

log nT

)− 2m0
2m0+d

 .
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SATL via two-step KRR

Algorithm 1 Smoothess Adaptive Hypothesis Transfer Learning

1. Let the smoothness candidate set for fS as MS = { Q1
log(nS)

, · · · , Q1N1
log(nS)

} and the

smoothness candidate set for fδ as Mδ = { Q2
log(nT )

, · · · , Q2N2
log(nT )

} for some fixed
positive number Q1,Q2 and integer N1,N2.

2. Conduct the two-phase KRR-based HTL with each phase follows the
training/validation process with MS and Mδ .



Optimality of SATL

Define the parameter space as,

Θ(h,R,m0,m) =
{
(ρT , ρS) : ∥fS∥Hm0 ≤ R, ∥fδ∥Hm ≤ h

}
.

Theorem (Optimality of SATL)
Let CL and CU be some constants independent of nS , nT , R, h, and δ. For δ ∈ (0, 1),
with probability 1 − δ, we have

1. (Lower bound)

inf
f̃

sup
Θ(h,R,m0,m)

P

{
∥f̃ − fT ∥2

L2
≥ CLδR2

(
n
− 2m0

2m0+d

S + n
− 2m

2m+d
T ξL

)}
≥ 1 − δ,

where ξL ∝ h2/R2.

2. (Upper bound)

∥f̂T−fT ∥2
L2

≤ CU

(
log

8
δ

)2 (
R2 + σ2

S

)
(

nS

log nS

)− 2m0
2m0+d

+

(
nT

log nT

)− 2m
2m+d

ξU

 ,

where ξU ∝ (h2 + σ2
T )/(R

2 + σ2
S).



Transfer Dynamic and Efficacy

▶ Upper bound of target-only learning:

(
nT

log nT

)− 2m0
2m0+d

▶ Upper bound of SATL:

(
nS

log nS

)− 2m0
2m0+d

︸ ︷︷ ︸
rough estimation error

+

(
nT

log nT

)− 2m
2m+d

︸ ︷︷ ︸
offset estimation error

ξU

▶ Jointly determine by source sample size nS and factor ξU .
▶ Compared to the target-only KRR rate, SATL produces a faster rate with small ξU

(high similarity) and large nS .



Comparing to Existing Bounds

▶ Ours: (
nS

log nS

)− 2m0
2m0+d

+

(
nT

log nT

)− 2m
2m+d

ξU

▶ Existing works via offset TL:

(nS)
− 2m0

2m0+d + (nT )
− 2m

2m+d h2

▶ The logarithmic factor due to adaptivity.
▶ Our bound indicates the transfer efficacy via the offset TL not singly depends on

the margin of dissimilarity measure h, but jointly depends on the ratio of the signal
strength between offset and source models (a.k.a. the angle).

Figure: Geometric illustration for how ξU will affect the HTL.



Experiments: Target-only KRR

Construct fT from Gaussian process s.t. fT ∈ Hm0 .
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Figure: Emiprical and theoretical error decay curves for different m0.



Experiments: SATL

nS = n3/2
T , fS ∈ H1 and fδ ∈ Hm such that ∥f̂T − fT ∥2

L2 = O(n
− 2m

2m+1
T ).
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Figure: Generalization error for different m and h.



Summary of Contribution

Kernel Ridge Regression
▶ When the true function lies in a Sobolev space Hm0 , we rigorously prove that

employing fixed bandwidth Gaussian kernels in KRR attains the minimax optimal
rate.

▶ The optimal decay rate for λ is λ ≍ exp{−Cn
2

2m0+d }, which decays exponentially
in n.

Transfer Learning
▶ We present a smoothness-adaptive and rate-optimal hypothesis transfer learning

algorithm for nonparametric regression, called SATL.
▶ Optimality: Employing Gaussian kernels to avoid saturation and guarantee the possibility

of optimality.
▶ Adaptivity: Training and validation process to achieve adaptive rate.
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