Model Assessment and Selection under Temporal Distribution Shift

Elise Han, Chengpiao Huang, Kaizheng Wang

Columbia University

ICML 2024

Temporal Distribution Shift

Temporal distribution shift can affect model performance:

Model assessment: Given a model f, estimate expected loss at present:

$$L_{\mathbf{t}}(f) = \mathbb{E}_{(x_t, y_t) \sim \mathbb{P}_{\mathbf{t}}} |f(x_t) - y_t|^2.$$

Model assessment: Given a model f, estimate expected loss at present:

$$L_{\mathbf{t}}(f) = \mathbb{E}_{(x_t, y_t) \sim \mathbb{P}_{\mathbf{t}}} |f(x_t) - y_t|^2.$$

Model selection: Given models $f_1, ..., f_m$, find $\underset{r \in [m]}{\operatorname{argmin}} L_{\boldsymbol{t}}(f_r)$.

Problem Setup: General Case

Model assessment: Given a model f, estimate expected loss at present:

$$L_{\boldsymbol{t}}(f) = \mathbb{E}_{z_{\boldsymbol{t}} \sim \mathbb{P}_{\boldsymbol{t}}} \ell(f, z_{\boldsymbol{t}}).$$

Model selection: Given models $f_1, ..., f_m$, find $\underset{r \in [m]}{\operatorname{argmin}} L_{\boldsymbol{t}}(f_r)$.

Model assessment: Given a model f, estimate expected loss at present:

$$L_{\mathbf{t}}(f) = \mathbb{E}_{(x_t, y_t) \sim \mathbb{P}_{\mathbf{t}}} |f(x_t) - y_t|^2.$$

Model selection: Given models $f_1, ..., f_m$, find $\underset{r \in [m]}{\operatorname{argmin}} L_{\boldsymbol{t}}(f_r)$.

Model Assessment

Rolling window: Average data from the last k periods:

Model Assessment

Rolling window: Average data from the last k periods:

$$\mathbb{P}_{1} \longrightarrow \cdots \longrightarrow \mathbb{P}_{t-k+1} \longrightarrow \cdots \longrightarrow \mathbb{P}_{t}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(x_{1}, y_{1}) \cdots (x_{t-k+1}, y_{t-k+1}) \cdots (x_{t}, y_{t})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\widehat{L}_{t,k}(f) = \frac{1}{k} \sum_{i=t-k+1}^{t} |f(x_{i}) - y_{i}|^{2}$$

Model Assessment

Rolling window: Average data from the last k periods:

$$\mathbb{P}_{1} \longrightarrow \cdots \longrightarrow \mathbb{P}_{t-k+1} \longrightarrow \cdots \longrightarrow \mathbb{P}_{t}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(x_{1}, y_{1}) \cdots (x_{t-k+1}, y_{t-k+1}) \cdots (x_{t}, y_{t})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\widehat{L}_{t,k}(f) = \frac{1}{k} \sum_{i=t-k+1}^{t} |f(x_{i}) - y_{i}|^{2}$$

How to choose k?

Window Selection

Bias-variance tradeoff: $|\widehat{L}_{t,k}(f) - L_t(f)| \leq B(k) + V(k)$, where

$$V(k) \approx \frac{\sigma_{t,k}}{\sqrt{k}} + \frac{1}{k}$$
 and $B(k) = \max_{i \in [k]} \left| L_{t-i+1}(f) - L_t(f) \right|$.

Window Selection

Bias-variance tradeoff: $|\widehat{L}_{t,k}(f) - L_t(f)| \leq B(k) + V(k)$, where

$$V(k) \approx \frac{\sigma_{t,k}}{\sqrt{k}} + \frac{1}{k}$$
 and $B(k) = \max_{i \in [k]} \left| L_{t-i+1}(f) - L_t(f) \right|$.

Window Selection

Bias-variance tradeoff: $|\widehat{L}_{t,k}(f) - L_t(f)| \leq B(k) + V(k)$, where

$$V(k) \approx \frac{\sigma_{t,k}}{\sqrt{k}} + \frac{1}{k}$$
 and $B(k) = \max_{i \in [k]} \left| L_{t-i+1}(f) - L_t(f) \right|$.

Challenge: B(k) and V(k) depend on unknown distribution shift

Adaptive Window Selection

Construct data-driven proxies for V(k) and B(k):

$$\widehat{V}(k) \simeq \frac{\widehat{\sigma}_{t,k}}{\sqrt{k}} + \frac{1}{k},$$

$$\widehat{B}(k) = \max_{i \in [k]} \left(\left| \widehat{L}_{t,k}(f) - \widehat{L}_{t,i}(f) \right| - \left[\widehat{V}(k) + \widehat{V}(i) \right] \right)_{+}.$$

Adaptive Window Selection

Construct data-driven proxies for V(k) and B(k):

$$\widehat{V}(k) \approx \frac{\widehat{\sigma}_{t,k}}{\sqrt{k}} + \frac{1}{k},$$

$$\widehat{B}(k) = \max_{i \in [k]} \left(\left| \widehat{L}_{t,k}(f) - \widehat{L}_{t,i}(f) \right| - \left[\widehat{V}(k) + \widehat{V}(i) \right] \right)_{+}.$$

Theorem

Choose $\widehat{k} \in \operatorname{argmin} \big\{ \widehat{B}(k) + \widehat{V}(k) \big\}$. With high probability,

$$\left|\widehat{L}_{t,\widehat{k}}(f) - L_t(f)\right| \lesssim \min_{1 \le k \le t} \left\{ B(k) + V(k) \right\}.$$

Adaptive Window Selection

Construct data-driven proxies for V(k) and B(k):

$$\widehat{V}(k) \approx \frac{\widehat{\sigma}_{t,k}}{\sqrt{k}} + \frac{1}{k},$$

$$\widehat{B}(k) = \max_{i \in [k]} \left(\left| \widehat{L}_{t,k}(f) - \widehat{L}_{t,i}(f) \right| - \left[\widehat{V}(k) + \widehat{V}(i) \right] \right)_{+}.$$

Theorem

Choose
$$\hat{k} \in \operatorname{argmin} \{\hat{B}(k) + \hat{V}(k)\}$$
. With high probability,

$$\left|\widehat{L}_{t,\widehat{k}}(f) - L_t(f)\right| \lesssim \min_{1 < k < t} \left\{ B(k) + V(k) \right\}.$$

Adaptivity to unknown distribution shift!

Single-elimination tournament based on pairwise comparisons:

Single-elimination tournament based on pairwise comparisons:

Pairwise comparison: Use rolling window to estimate performance gap

$$L_t(f_1) - L_t(f_2).$$

Single-elimination tournament based on pairwise comparisons:

Pairwise comparison: Use rolling window to estimate performance gap

$$L_t(f_1) - L_t(f_2).$$

Theoretical guarantee: Near-optimal model selection.

Model selection for prediction tasks:

Model selection for prediction tasks:

Candidate models $f_1, ..., f_m$:

- ► Moving average, random forest, XGBoost
- ► Trained on different windows of past data

Model selection for prediction tasks:

Candidate models $f_1, ..., f_m$:

- ► Moving average, random forest, XGBoost
- ► Trained on different windows of past data

Benchmark algorithm A_k : use a fixed window k to select models.

Table: Mean excess risks of selection methods for different datasets

Data	Ours	\mathcal{A}_1	\mathcal{A}_4	\mathcal{A}_{16}	\mathcal{A}_{64}	\mathcal{A}_{256}
Synthetic-1	0.015	0.043	0.025	0.013	0.010	0.010
Synthetic-2	0.139	0.157	0.171	0.539	1.034	1.067
Arxiv (in 1E-3)	2.4	6.7	4.5	2.4	1.7	1.9
Housing	0.071	0.071	0.069	0.071	0.091	0.095

Table: Mean excess risks of selection methods for different datasets

Data	Ours	\mathcal{A}_1	\mathcal{A}_4	\mathcal{A}_{16}	\mathcal{A}_{64}	\mathcal{A}_{256}
Synthetic-1	0.015	0.043	0.025	0.013	0.010	0.010
Synthetic-2	0.139	0.157	0.171	0.539	1.034	1.067
Arxiv (in 1E-3)	2.4	6.7	4.5	2.4	1.7	1.9
Housing	0.071	0.071	0.069	0.071	0.091	0.095

ightharpoonup Different distribution shift patterns lead to different optimal k.

Table: Mean excess risks of selection methods for different datasets

Data	Ours	\mathcal{A}_1	\mathcal{A}_4	\mathcal{A}_{16}	\mathcal{A}_{64}	\mathcal{A}_{256}
Synthetic-1	0.015	0.043	0.025	0.013	0.010	0.010
Synthetic-2	0.139	0.157	0.171	0.539	1.034	1.067
Arxiv (in 1E-3)	2.4	6.7	4.5	2.4	1.7	1.9
Housing	0.071	0.071	0.069	0.071	0.091	0.095

- ightharpoonup Different distribution shift patterns lead to different optimal k.
- ▶ Our algorithm is comparable to A_k with the best k in hindsight.