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Geosciences & Astronomy
(e.g., Earth data)

Neuroscience
(e.g., Cortical signals)

Computer vision
(e.g., 360o images)

Machine Learning
(e.g., self-supervised learning)

Some applications of interests
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The Sliced-Wasserstein Distances
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In the discrete case, it becomes a sorting problem

Time complexity: 𝒪(𝑁𝑙𝑜𝑔𝑁) where 𝑁 is the number of samples



Let 𝑠 ∈ 𝕊𝑑\{s𝑛} then the projection  𝑥 = 𝜙(𝑠) is given by 

Moreover, the inverse 𝑠 = 𝜙−1(𝑥) is given by
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The Stereographic Projection
Bridging the spherical and Euclidean manifolds 

𝑥 𝑖 =
2 𝑠 𝑖

1− 𝑠 𝑖+1
,  f𝑜𝑟 𝑖 = 1,2, … 𝑑

4

𝑠 𝑖 =
2 𝑥 𝑖

σ𝑗=1
𝑑 [𝑥]𝑗

2+1
=

2 𝑥 𝑖

𝑥 2 + 1



lim
𝜖→0

cos−1 𝑠1, 𝑠2 = 0 

lim
𝜖→0

𝜙 𝑠1 − 𝜙(𝑠2) = ∞

At the extreme, consider points 𝑠1 = −𝜖, 0, … , 0, 1 − 𝜖2  and 𝑠2 = 𝜖, 0, … , 0, 1 − 𝜖2  . We have that

Distance distortion

The Stereographic Projection can incur significant distortion.
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Minimizing distortion

We propose an analytic function with bounded range 

ℎ(⋅) such that dℝ𝑑(ℎ 𝜙 ⋅ , ℎ 𝜙 ⋅ ) ≈ d𝕊𝑑(⋅,⋅)
𝐶𝐶 = 0.632𝐶𝐶 = 0.224

𝑑𝕊𝑑 𝑠, 𝑠′ = 𝑎𝑟𝑐𝑐𝑜𝑠(𝑠 ⋅ 𝑠′)
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Alternatively, we could use a neural network to learn a nearly isometric embedding.
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ℋ𝑓 𝑡, 𝜃 = න
𝑅𝑑

𝑓 𝑥 𝛿 𝑡 − ℎ 𝑥 , 𝜃 𝑑𝑥ℛ𝑓 𝑡, 𝜃 = න
𝑋

𝑓(𝑥)𝛿 𝑡 − 𝑥, 𝜃 𝑑𝑥

Spatial Slices

Figure credit: Chen et al. 2022



Let 𝜇 ∈ ℳ(𝕊𝑑)  denote a Radon measure on 𝕊𝑑  such that 
𝜇 𝑠𝑛 = 0 . We denote the Stereographic Projection 
𝜙: 𝕊𝑑{𝑠𝑛} → ℝ𝑑 . Then, the Stereographic Spherical Radon 
Transform, its generalized are respectively defined as  

𝑆ℋ 𝜇 = ℋ 𝜙#𝜇 ∈ ℳ(ℝ × 𝕊𝑑−1)

The Stereographic Spherical Radon Transform

𝑆ℛ 𝜇 = ℛ 𝜙#𝜇 ∈ ℳ(ℝ × 𝕊𝑑−1)
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The S3W distances

Let 𝜇, 𝜈 ∈  𝒫𝑝(𝕊𝑑) denote two probability measures on the sphere in ℝ𝑑+1. The S3W distance can be 

defined as

where 𝜎𝑑′ ∈ 𝒫(𝕊𝑑′−1) represents a uniform measure on 𝕊𝑑′−1
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Rotation-Invariant Extension (RI-S3W)

Let 𝑆𝑂(𝑑 + 1) denote the special orthogonal group in ℝ𝑑+1 and let R ∈ 𝑂(𝑑 + 1) denote a rotation. 

For 𝜇 ∈ 𝒫𝑝 𝕊𝑑 , we define the rotation-invariant extension of S3W as follows

where 𝜔 denotes the normalized Haar measure on 𝑆𝑂(𝑑 + 1) 

𝑅𝐼- 𝑆3𝑊ℋ,𝑝 𝜇, 𝜈 = 𝔼𝑅~𝜔[𝑆3𝑊ℋ,𝑝(𝑅#𝜇, 𝑅#𝜈)]

𝑅𝐼- 𝑆3𝑊𝑝 Ƹ𝜇, Ƹ𝜈 ≈
1

𝑁𝑅
σ𝑛=1

𝑁𝑅 𝑆3𝑊𝑝[ 𝑅𝑛 # Ƹ𝜇, 𝑅𝑛 # Ƹ𝜈]
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Runtime and complexity

S3W has time complexity of 𝒪 𝐿𝑁 𝑑 + 𝑙𝑜𝑔𝑁 .

RI-S3W is 𝒪 𝑁𝑅 𝑑3 + 𝑁𝑑2 + 𝐿𝑁 𝑑 + 𝑙𝑜𝑔𝑁 .
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Time Complexity

Runtime



Experiments

Objective : matching the source and target distributions
Setup :
• 12 vMFs, 200 datapoints each
• Adam optimizer full batch and mini-batch (500)
• Metrics: runtime, NLL, log 𝑊2

Result :
Our methods achieve lowest loss and can be up to 10x faster

Objective : estimate density of disasters on earth with NF
Setup :
• Earth datasets
• Rezende et al. 2020: Exponential map normalizing flows
• Metrics: NLL
Result :
Our methods achieve lowest NLL (and much faster)

Objective : enforcing dispersity of learned representation
Setup :
• CIFAR-10
• Wang and Isola 2020: SSL on the sphere, 3-dimensional
• Metrics: runtime, accuracy
Result :
Our methods achieve slightly better acc. and are 1.5x faster

Objective : enforcing dispersity of learned representation
Setup :
• CIFAR-10, MNIST
• Kolouri et al. 2018: SSL on the sphere, 3-dimensional
• Metrics: runtime, NLL, log 𝑊2 , BCE
Result :
Our methods achieve better results and are 2x faster
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Gradient flow on the sphere

Self-supervised learning

Density estimation with Earth data

Sliced-Wasserstein Autoencoder
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Earthquake Flood Fire

Gradient flow on the sphere Density estimation with Earth data
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Self-supervised learning Sliced-Wasserstein Autoencoder
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