

Stereographic Spherical Sliced Wasserstein Distances

Huy Tran*, Yikun Bai*, Abihith Kothapalli*, Ashkan Shahbazi, Xinran Liu, Rocio Diaz Martin†, Soheil Kolouri

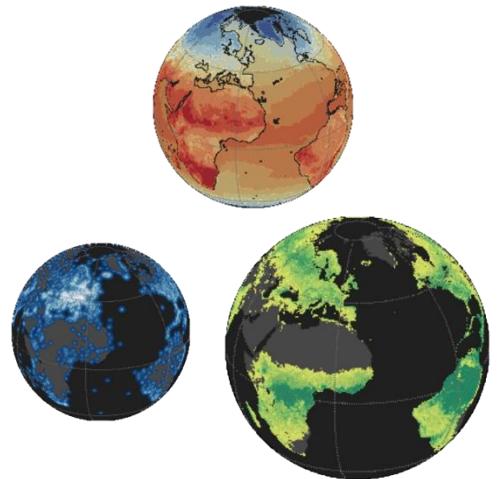
Department of Computer Science, Vanderbilt University

(†) Department of Mathematics, Vanderbilt University

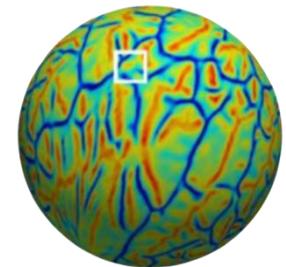
(*) Equal contribution

@huytransformer

Some applications of interests

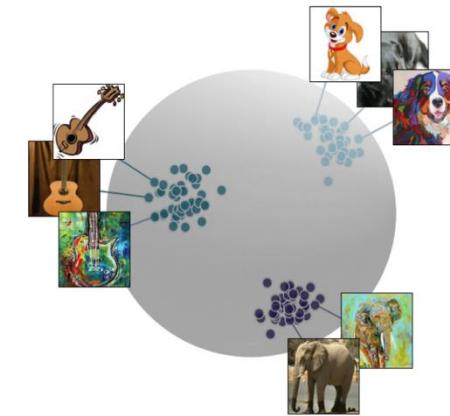


Geosciences & Astronomy
(e.g., Earth data)



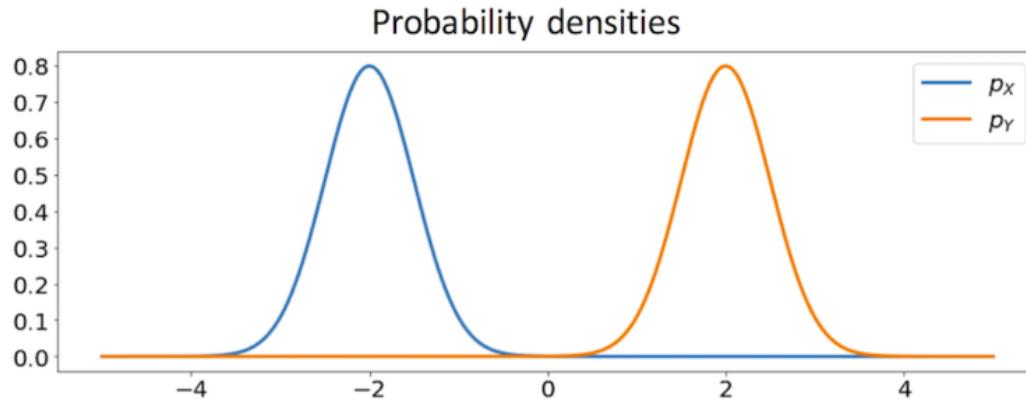
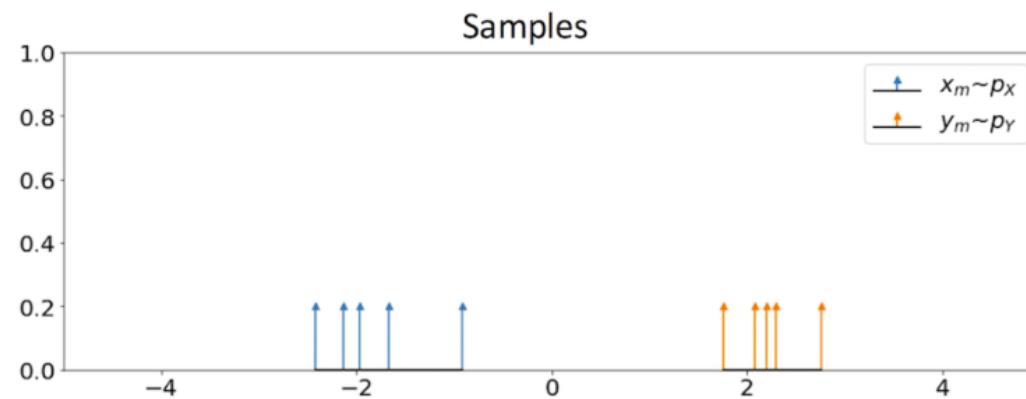
Neuroscience
(e.g., Cortical signals)

Computer vision
(e.g., 360° images)



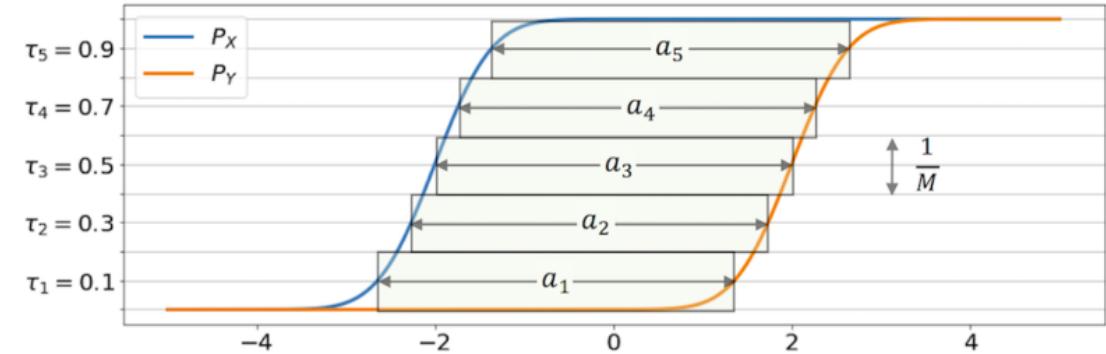
Machine Learning
(e.g., self-supervised learning)

The Sliced-Wasserstein Distances

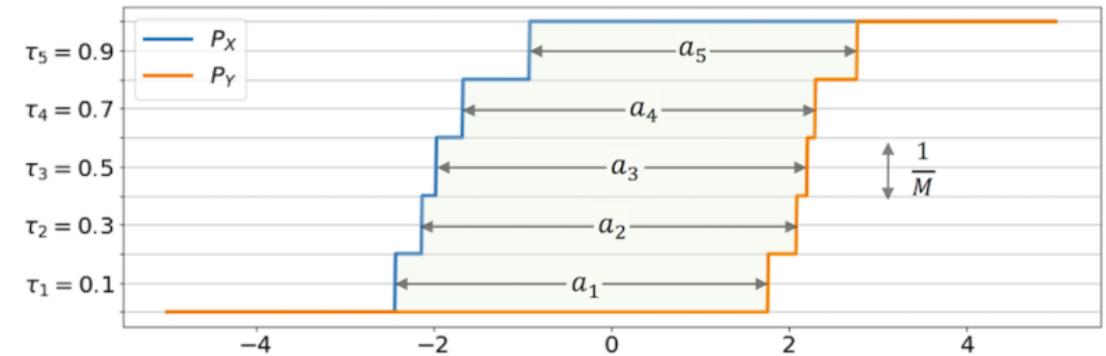


$$W_c(\mu, \nu) = \int_0^1 c(P_X^{-1}(\tau), P_Y^{-1}(\tau)) d\gamma(s_1, s_2)$$

Cumulative distributions and calculation of the Wasserstein distance



Approximated cumulative distributions and calculation of the Wasserstein distance



In the discrete case, it becomes a sorting problem

Time complexity: $\mathcal{O}(N \log N)$ where N is the number of samples

The Stereographic Projection

Bridging the spherical and Euclidean manifolds

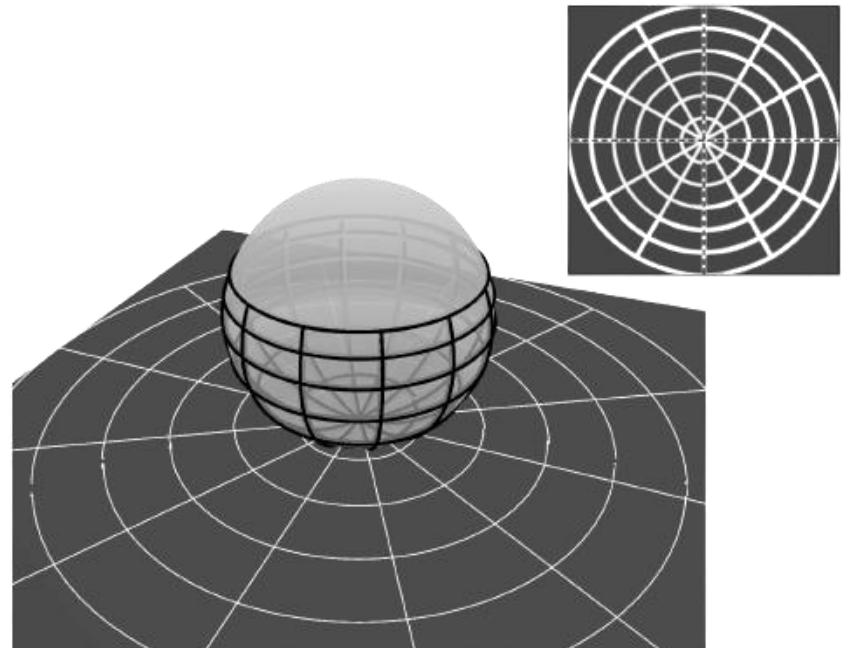
Let $s \in \mathbb{S}^d \setminus \{s_n\}$ then the projection $x = \phi(s)$ is given by

$$[x]_i = \frac{2[s]_i}{1-[s]_{i+1}}, \text{ for } i = 1, 2, \dots, d$$

Moreover, the inverse $s = \phi^{-1}(x)$ is given by

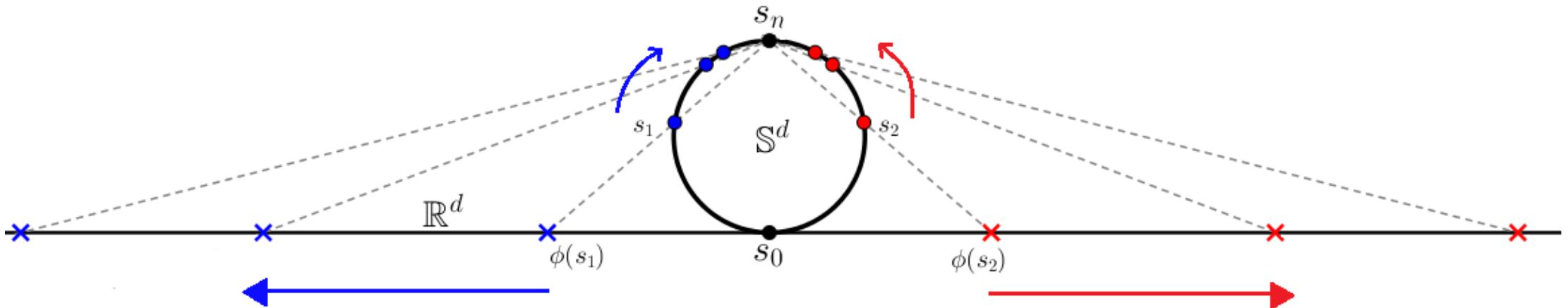
$$[s]_i = \frac{2[x]_i}{\sum_{j=1}^d [x]_j^2 + 1} = \frac{2[x]_i}{\|x\|^2 + 1}$$

$$[s]_{d+1} = \frac{\sum_{j=1}^d [x]_j^2 - 1}{\sum_{j=1}^d [x]_j^2 + 1} = \frac{\|x\|^2 - 1}{\|x\|^2 + 1}$$



$$\phi: \mathbb{S}^d \setminus \{s_n\} \rightarrow \mathbb{R}^d$$

Distance distortion



The Stereographic Projection can incur significant distortion.

At the extreme, consider points $s_1 = [-\epsilon, 0, \dots, 0, \sqrt{1 - \epsilon^2}]$ and $s_2 = [\epsilon, 0, \dots, 0, \sqrt{1 - \epsilon^2}]$. We have that

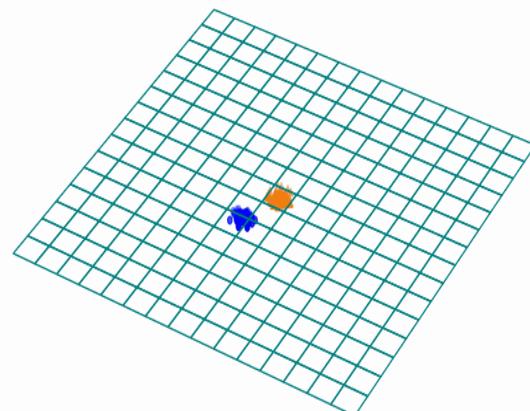
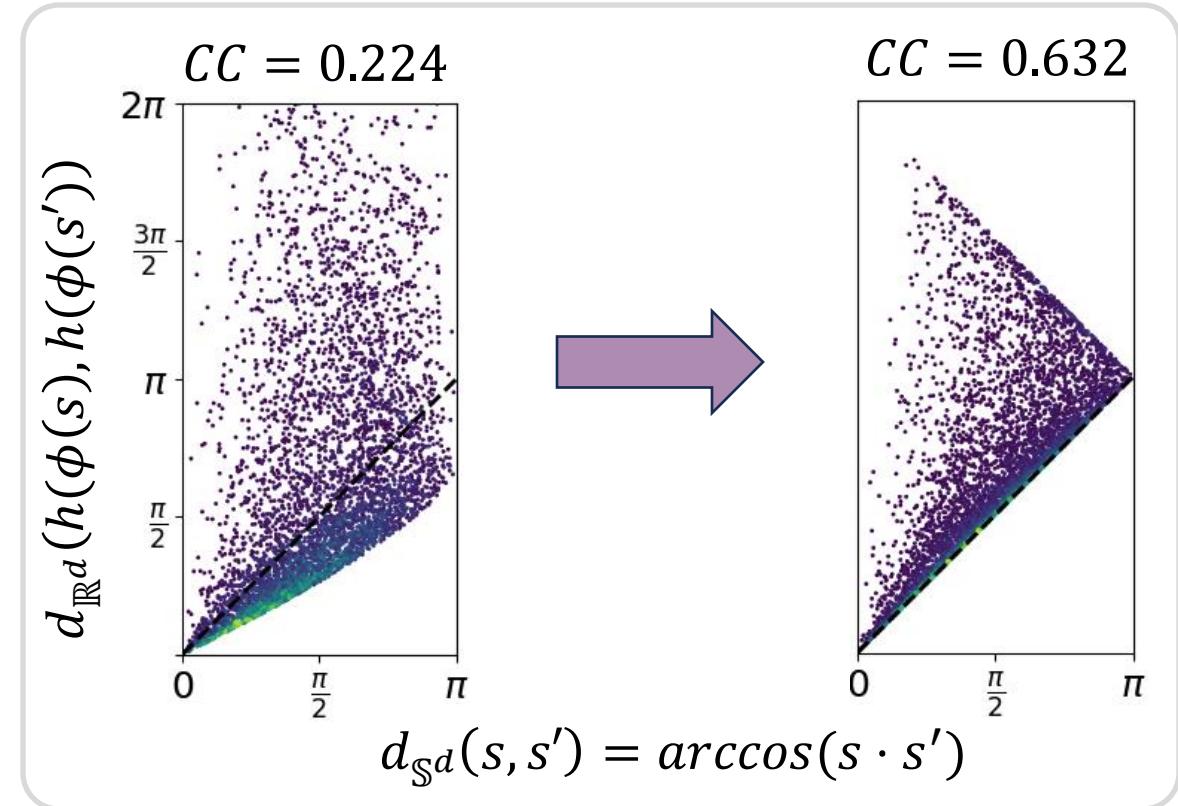
$$\lim_{\epsilon \rightarrow 0} \cos^{-1}(s_1, s_2) = 0$$

$$\lim_{\epsilon \rightarrow 0} \|\phi(s_1) - \phi(s_2)\| = \infty$$

Minimizing distortion

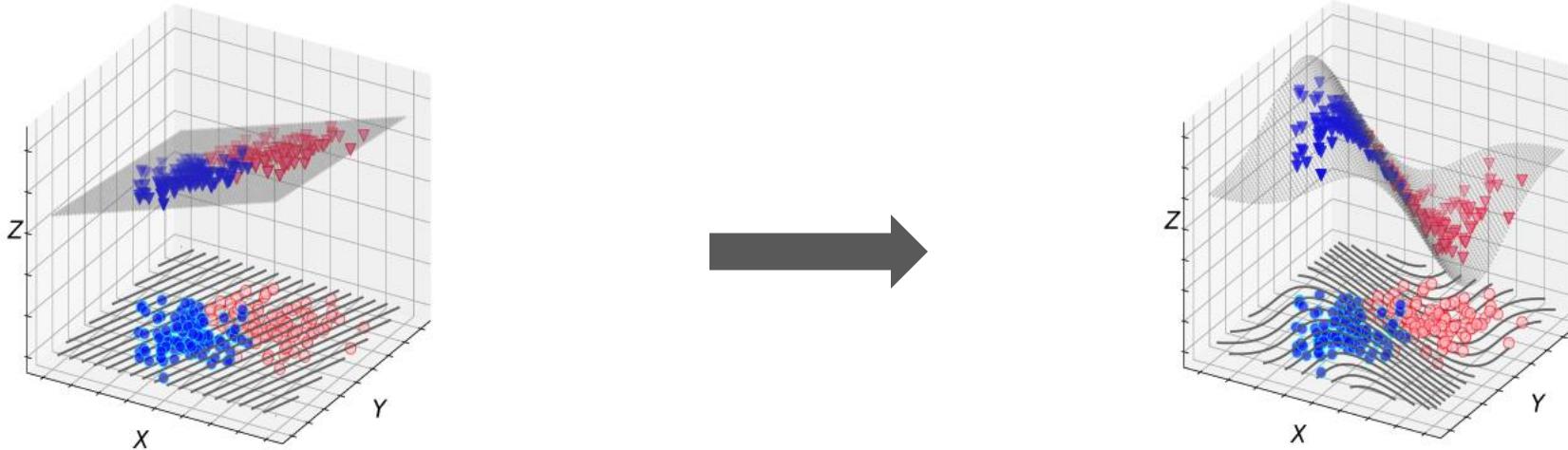
We propose an analytic function with bounded range $h(\cdot)$ such that $d_{\mathbb{R}^d}(h(\phi(\cdot)), h(\phi(\cdot))) \approx d_{\mathbb{S}^d}(\cdot, \cdot)$

$$h_a(x) = \arccos\left(\frac{\|x\|^2 - 1}{\|x\|^2 + 1}\right) \frac{x}{\|x\|}$$



Alternatively, we could use a neural network to learn a nearly isometric embedding.

Spatial Slices



$$\mathcal{R}f(t, \theta) = \int_X f(x) \delta(t - \langle x, \theta \rangle) dx$$

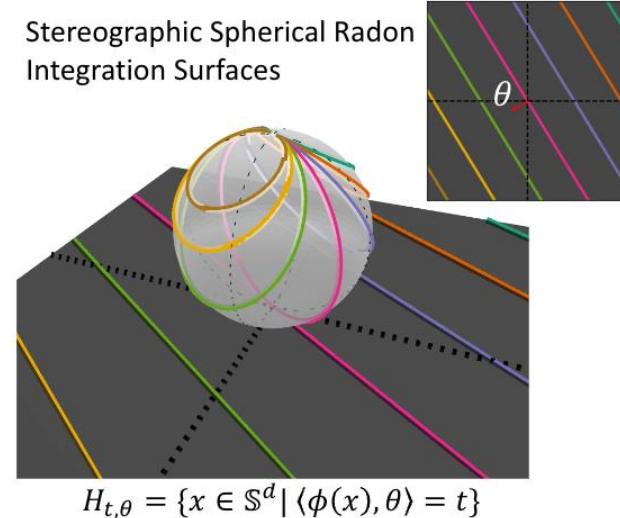
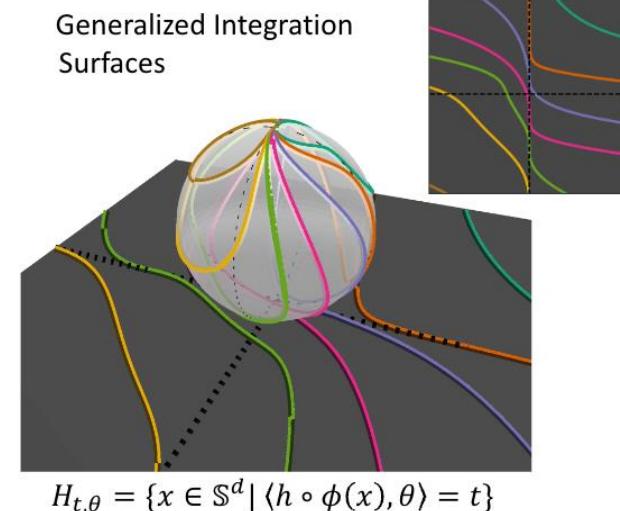
$$\mathcal{H}f(t, \theta) = \int_{R^d} f(x) \delta(t - \langle h(x), \theta \rangle) dx$$

The Stereographic Spherical Radon Transform

Let $\mu \in \mathcal{M}(\mathbb{S}^d)$ denote a Radon measure on \mathbb{S}^d such that $\mu(\{s_n\}) = 0$. We denote the Stereographic Projection $\phi: \mathbb{S}^d \setminus \{s_n\} \rightarrow \mathbb{R}^d$. Then, the Stereographic Spherical Radon Transform, its generalized are respectively defined as

$$S_{\mathcal{R}}(\mu) = \mathcal{R}(\phi_{\#}\mu) \in \mathcal{M}(\mathbb{R} \times \mathbb{S}^{d-1})$$

$$S_{\mathcal{H}}(\mu) = \mathcal{H}(\phi_{\#}\mu) \in \mathcal{M}(\mathbb{R} \times \mathbb{S}^{d-1})$$



The S3W distances

Let $\mu, \nu \in \mathcal{P}_p(\mathbb{S}^d)$ denote two probability measures on the sphere in \mathbb{R}^{d+1} . The S3W distance can be defined as

$$S3W_{\mathcal{H},p}(\mu, \nu) = \left[\int_{\mathbb{S}^{d'-1}} W_p^p(\mathcal{S}_{\mathcal{H}}(\mu)_{\theta}, \mathcal{S}_{\mathcal{H}}(\nu)_{\theta}) d\sigma_{d'}(\theta) \right]^{\frac{1}{p}}$$

where $\sigma_{d'} \in \mathcal{P}(\mathbb{S}^{d'-1})$ represents a uniform measure on $\mathbb{S}^{d'-1}$

$$S3W_p(\hat{\mu}, \hat{\nu}) \approx \left[\frac{1}{L} \sum_{l=1}^L \sum_{m=1}^M \left| \left\langle h\left(\phi_{\in}(x_{\pi_l[m]})\right), \theta_l \right\rangle - \left\langle h\left(\phi_{\in}(y_{\pi_{l'}[m]})\right), \theta_l \right\rangle \right|^p \right]^{\frac{1}{p}}$$

Rotation-Invariant Extension (RI-S3W)

Let $SO(d + 1)$ denote the special orthogonal group in \mathbb{R}^{d+1} and let $R \in O(d + 1)$ denote a rotation. For $\mu \in \mathcal{P}_p(\mathbb{S}^d)$, we define the rotation-invariant extension of S3W as follows

$$RI\text{-}S3W_{\mathcal{H},p}(\mu, \nu) = \mathbb{E}_{R \sim \omega}[S3W_{\mathcal{H},p}(R_{\#}\mu, R_{\#}\nu)]$$

where ω denotes the normalized Haar measure on $SO(d + 1)$

$$RI\text{-}S3W_p(\hat{\mu}, \hat{\nu}) \approx \frac{1}{N_R} \sum_{n=1}^{N_R} S3W_p[(R_n)_{\#}\hat{\mu}, (R_n)_{\#}\hat{\nu}]$$

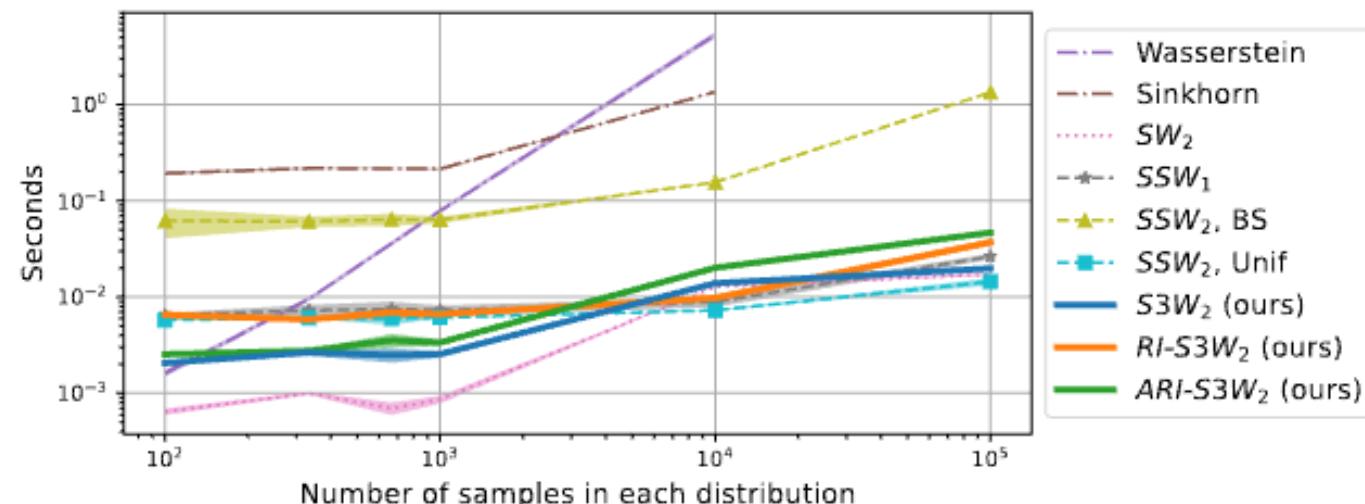
Runtime and complexity

Time Complexity

S3W has time complexity of $\mathcal{O}(LN(d + \log N))$.

RI-S3W is $\mathcal{O}(N_R(d^3 + Nd^2 + LN(d + \log N)))$.

Runtime



Experiments

Gradient flow on the sphere

Objective : matching the source and target distributions

Setup :

- 12 vMFs, 200 datapoints each
- Adam optimizer full batch and mini-batch (500)
- Metrics: runtime, NLL, $\log(W_2)$

Result :

Our methods achieve lowest loss and can be up to 10x faster

Density estimation with Earth data

Objective : estimate density of disasters on earth with NF

Setup :

- Earth datasets
- Rezende et al. 2020: Exponential map normalizing flows
- Metrics: NLL

Result :

Our methods achieve lowest NLL (and much faster)

Self-supervised learning

Objective : enforcing dispersity of learned representation

Setup :

- CIFAR-10
- Wang and Isola 2020: SSL on the sphere, 3-dimensional
- Metrics: runtime, accuracy

Result :

Our methods achieve slightly better acc. and are 1.5x faster

Sliced-Wasserstein Autoencoder

Objective : enforcing dispersity of learned representation

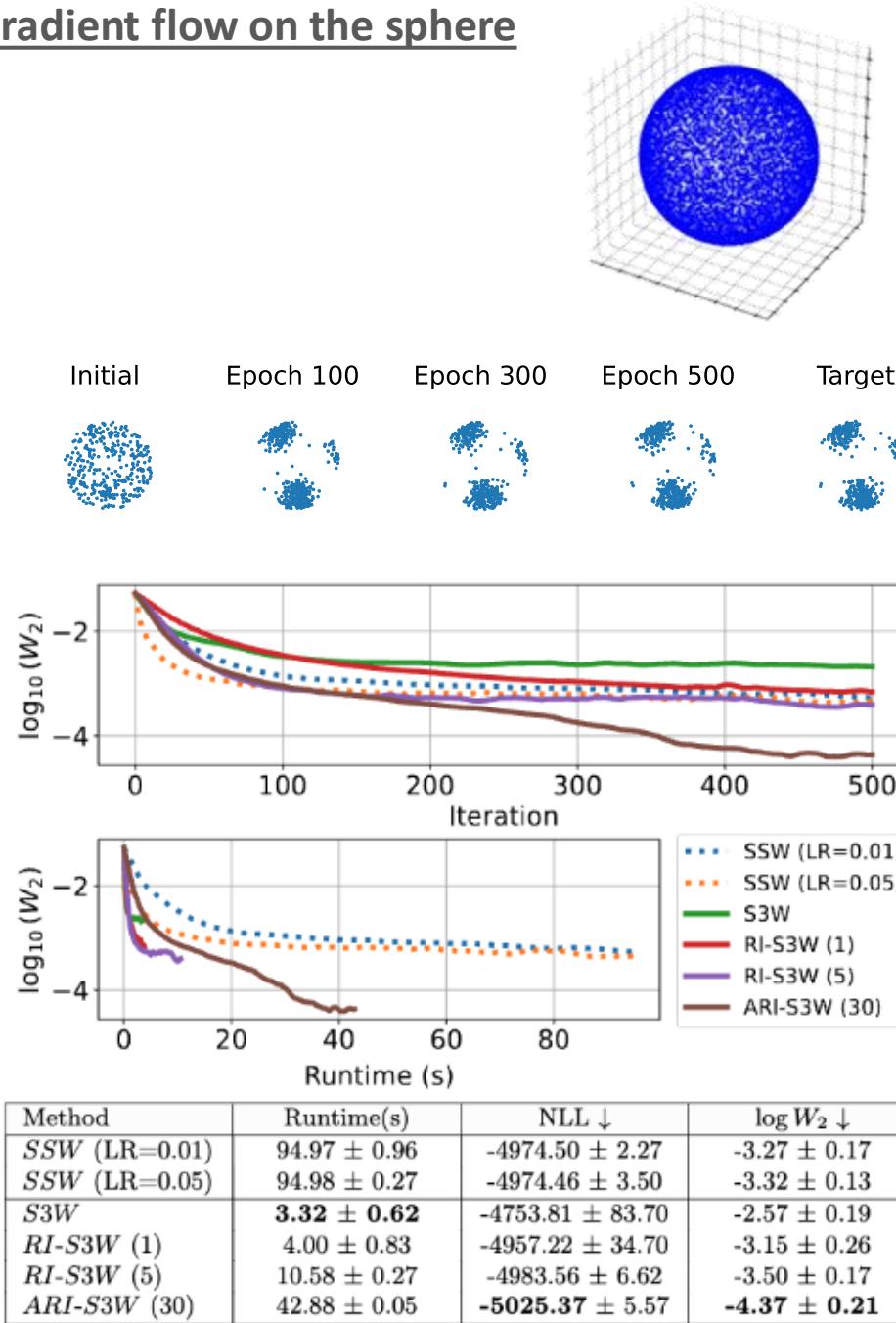
Setup :

- CIFAR-10, MNIST
- Kolouri et al. 2018: SSL on the sphere, 3-dimensional
- Metrics: runtime, NLL, $\log(W_2)$, BCE

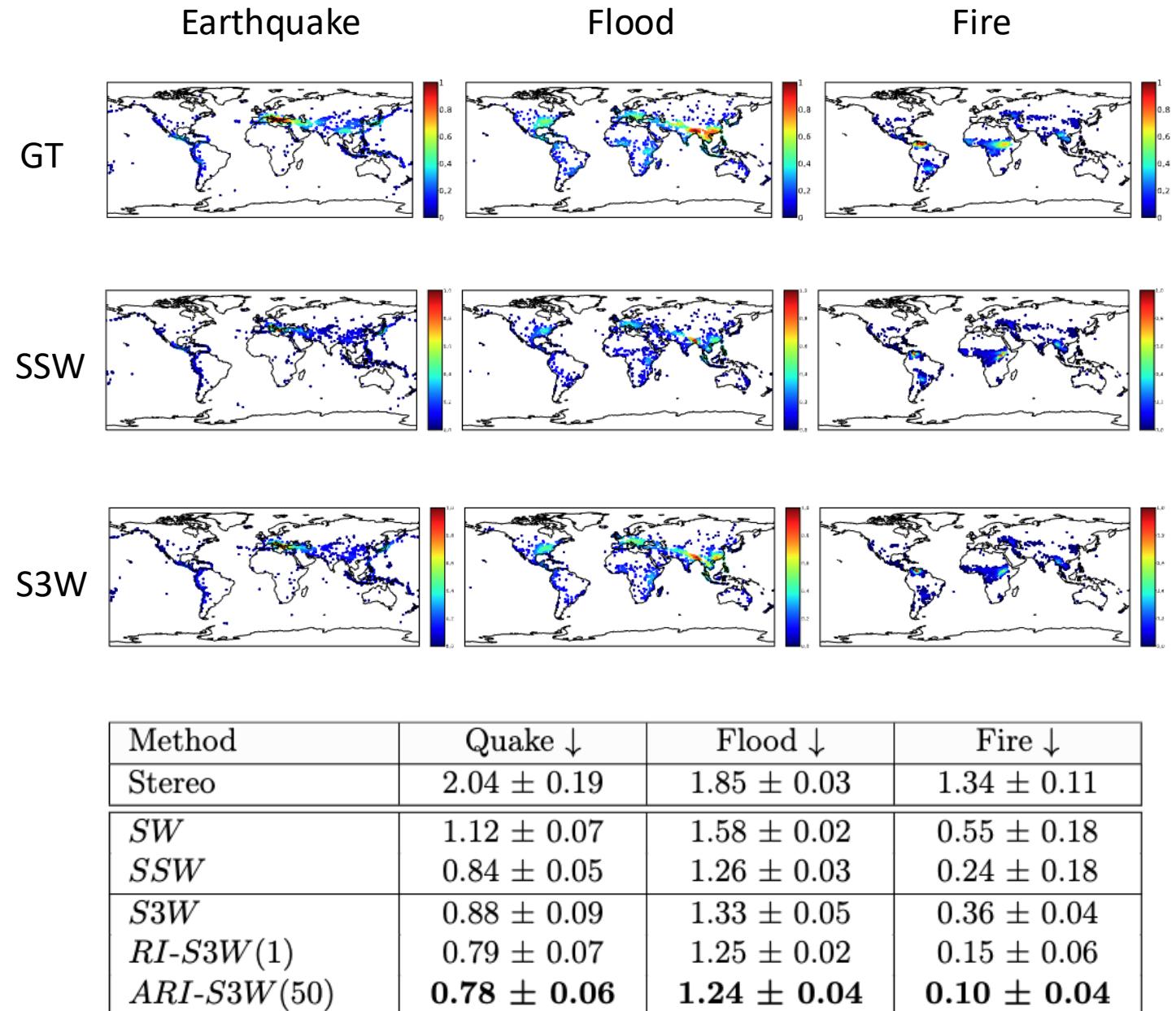
Result :

Our methods achieve better results and are 2x faster

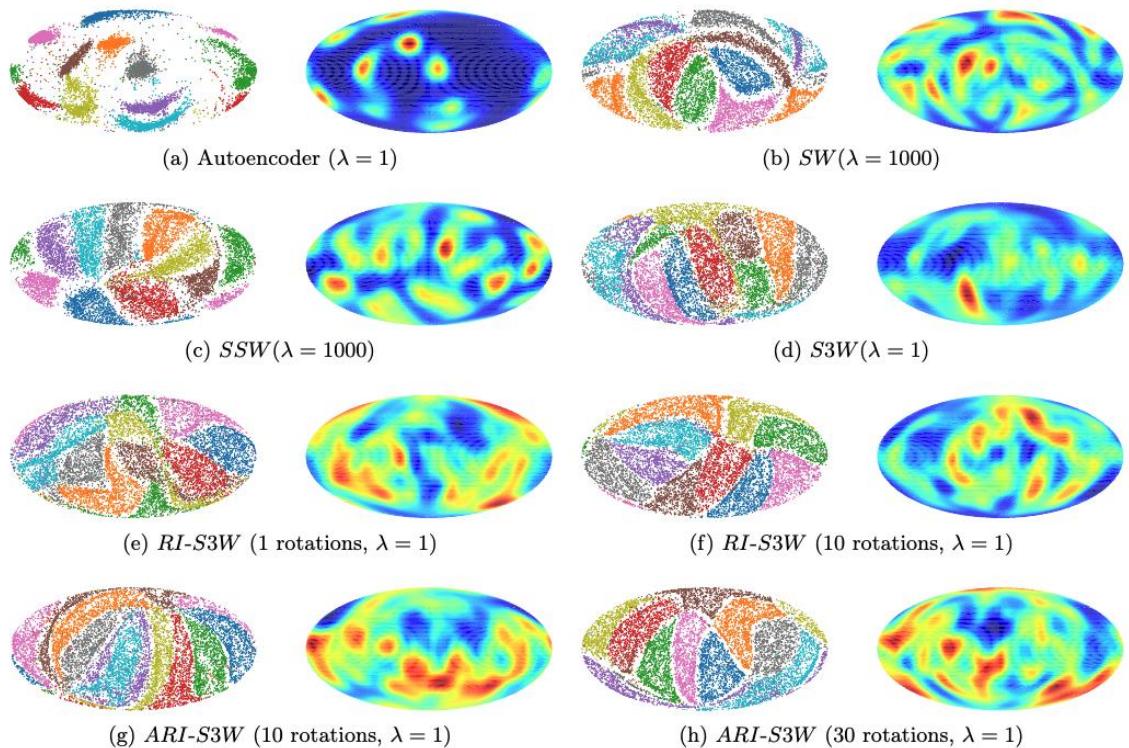
Gradient flow on the sphere



Density estimation with Earth data

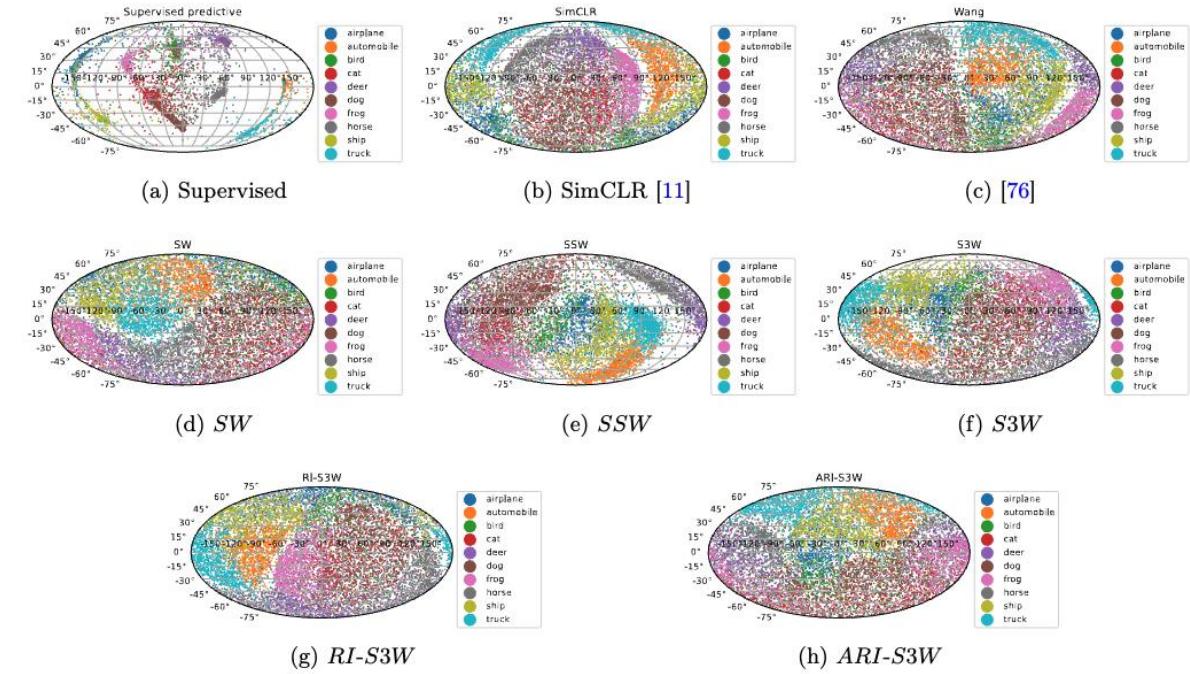


Self-supervised learning



Method	$\log W_2 \downarrow$	NLL \downarrow	BCE \downarrow	Time (s/ep.)
Supervised	-0.5132	0.0060	0.6319	5.3243
SSW	-2.1949	0.0052	0.6323	15.4651
SW	-3.3229	-0.0007	0.6348	5.4661
S3W	-3.3381	0.0025	0.6318	5.7511
RI-S3W (5)	-3.1424	-0.0043	0.6376	7.5443
ARI-S3W (5)	-3.3853	0.0028	0.6332	5.8316

Sliced-Wasserstein Autoencoder



Method	Acc. (%) E/P \uparrow	Time (s/ep.)
Supervised	92.38 / 91.77	—
Hypersphere [76]	79.76 / 74.57	24.28
SimCLR [11]	79.69 / 72.78	20.94
SSW [5]	70.46 / 64.52	33.14
SW	74.45 / 68.35	21.09
S3W	78.54 / 73.84	21.36
RI-S3W (5)	79.97 / 74.27	21.59
ARI-S3W (5)	79.92 / 75.07	21.51