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Background

Particle System Protein Dynamics

Fluid Simulation Computational Materials

The number of nodes contained in actual 
scientific scenarios can often reach 
hundreds or even thousands.
• Protein Dynamics (Nodes ~ 800)
• Fluid Simulation (Nodes ~ 8000)

However, current equivariant GNNs are 
usually only referenced on small-scale
geometric graphs.
• N-body (Nodes = 5)
• QM9 (Nodes <= 29)

How to apply equivariant GNNs to 
large-scale geometric graphs?



Background

Quadratic complexity 
of complete graph (|E| ~ |V|^2)

Time and Memory Expressive Power

Sparse geometric graphs require 
more layers for message passing

[1] On the Expressive Power of Geometric Graph Neural Networks, ICML23.



Related Works

Fast Multipole Method

Divide the space to form a tree search structure, 
but it is not friendly to parallelization.

Introduce Prior Knowledge

Not universial

[1] Learning Physical Dynamics with Subequivariant Graph Neural Networks, NeurIPS22.



Related Works

[1] VN-EGNN: E(3)-Equivariant Graph Neural Networks with Virtual Nodes Enhance Protein Binding Site Identification, NeurIPS23 Workshop AI4D3.
[2] Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs, ICML23.

Directly introduce virtual nodes:
• Sampling from the Fibonacci grid
• Participating in message passing like real 

nodes

Results:
• Not E(3)-equivariant
• Virtual nodes are difficult to 

separate



Requirements for Virtual Nodes

• Do not destroy the E(3)-equivariance 
of equivariant GNNs

• The introduction of virtual nodes does 
not require any prior knowledge

• Different virtual nodes can effectively 
represent the distribution of real 
nodes



Architecture of FastEGNN



Equivariant Init. of Virtual Nodes

Initiation of virtuals nodes at CoM
(center of mass)

Separating different virtual nodes using 
learnable parameters

Some exceptions 
(symmetrical structures)



Message Passing in FastEGNN

Message between real nodes:
Use ~(1-η)*|V|^2 edges, can be reduced by a 
large cutoff rate η

Message between virtual nodes:
Use ~K^2 edges, K is the number of virtual nodes, 
K<<|V|, all virtual nodes build an ordered set

All message here is E(3)-invariant.



Real-Virtual Message and Aggregation

Message between real nodes:
Use K*|V| edges.

Real aggregation Virtual aggregation



Introduction of MMD Loss

MMD Loss:

Overall training loss:



Implementation of FastSchNet

FastSchNet

[1] A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications, arXiv:2403.00485.



Implementation of FastTFN

FastTFN

[1] A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications, arXiv:2403.00485.



Experiments
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Conclusion

We propose an advanced model with E(n) equivariance for large geometric graphs 
named FastEGNN:

• Constructing an ordered set of virtual nodes to perform expressive message passing 
that enjoys both distinctiveness and distributedness.

• Use MMD loss to align virtual nodes to real nodes.

Comprehensive evaluations on 100-body simulation, protein molecular dynamics, and 
particle-based fluid simulation Water-3D consistently demonstrate the superiority of 
FastEGNN in terms of achieving remarkably lower simulation error and significant speed-
up due to sparsification.

GitHub: https://github.com/dhcpack/FastEGNN
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