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World Models
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World Models: Model-based Agents:
Internal models of how the Act through an optimization procedure
world works (planning) running the world model.

Yann LeCun. A path towards autonomous machine intelligence. 2022.
Dan Klein and Pieter Abbeel. Introduction to Artificial Intelligence.



Video Generation Models as World Simulators?

Abandon
generative models!

"Modeling the world for action by generating
pixel is as wasteful and doomed to failure..."

"It's much more desirable to generate
abstract representations of those
continuations that eliminate details in the
scene that are irrelevant to any action we
might want to take."

Pixel-Driven vs. Objective-Driven

OpenAll. https://openai.com/research/video-generation-models-as-world-simulators
Yann LeCun. https://twitter.com/ylecun/status/1758740106955952191



A Multi-task View of World Models
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Two key tasks in world models:

Observation Modeling: how the environment transits and is observed

p(Ot—l—l:T ! 01:t7a1:T)
how the task has been progressed
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A Multi-task View of World Models
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Unifying MBRL in concept (1/2): Explicit MBRL

« Learns an exact duplicate of the environment
« Typically dominated by observation modeling

« Limited by environment complexity (irrelevant details!) and model capacity

Thomas M. Moerland, Model-based reinforcement learning: A survey, 2023



A Multi-task View of World Models
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Unifying MBRL in concept (2/2): Implicit MBRL

 |Learns task-centric world models
* Relies solely on

« Limited by sparse learning signals

Thomas M. Moerland, Model-based reinforcement learning: A survey, 2023

Value equivalence principle:
Predicted rewards of the world
model match that of the real
environment.

Schrittwieser, Julian, et al. Mastering atari, go, chess and shogi by planning with a learned model. Nature 588 (2020): 604-609.



Our Contributions
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Observation Modeling
Explicit MBRL Explicit MBRL
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' armonyDream
SimPLe, (Ouxs)
Dreamer, etc.
World Model Learning

Implicit MBRL
TD-MPC,
MuZero,

EfficientZero, etc.

Systematically identify the multi-task essence of world
models and analyze the deficiencies by task domination.

HarmonyDream, a world model learning approach to
mitigate the domination of either task.

Extensive experiments on visual robotic tasks and video

game benchmarks.

v" Three findings

v" One simple yet
effective method

v Eight Domains



Dreamer: An Instantiation of Explicit World Models
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& = Representation model: <t ™~ 49 (Zt ‘ Zt—1,At—1, Ot)
Transition model: 2y ~ pe( 2t ‘ Rt—1, at—l)
Observation model: 0 ~ pg(0¢ | 2¢)
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Model Learning L(0) = Egy(2r.0lar.r01r) [Z (—lnpe 0¢ | z¢) — Inpg (1 | 2¢)
t—1 ] 1 ]

with Sequential Observation loss Reward loss
.. ‘|'5z KL [QH(Zt | Rt—1,0Q¢t—1, Ot) || pe(é’t | Zt—1, at—l)])} .
Variational Inference : -

Dynamics loss between prior and posterior

Behavior Learning: Purely on imaginary latent trajectories

Hafner, Danijar, et al. Dream to control: Learning behaviors by latent imagination. ICLR 2020.
Hafner, Danijar, et al. Mastering atari with discrete world models. ICLR 2021.



Dive into World Model Learning

, w,c It aggregates
. L(0) = —1 - 1 ( ) )
Observation loss (0) = —logpg (01 | 2¢) hzw:c 0g Po | 2 WG dimensions
Reward loss: L.(0) =—logpg (11 | 2t)
. ® Reward Loss @ Observation Loss Dynamics Loss
Dynamics loss: Lq(0) =KL[gg (2 | ze—1,a:_1,0¢) AN =
N Lever '
Hpe (Zt ‘ Zt—l,at—l)] pul 1 ==
farde | -
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Hammer - e =
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Typical but suboptimal practice: oss Seale
Approximately equal weights Imbalanced nature of world
w, = w, = wg = 1.0 model learning

Potential benefits of multi-task learning yet properly exploited!



Task Weighting is Crucial

Dramatically boosted sample efficiency!

100 Lever Pull Handle Pull Side Hammer
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Testbed:
Three manipulation tasks 5(9) — woﬁo(e) + w, L, (9) + ’wdﬁd(e)
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Finding 1. Leveraging the reward loss by adjusting its coefficient in

world model learning has a great impact on the sample efficiency of

model-based agents.
U J
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Ground-

Dreamer
(w,

Dreamer
(w, = 100)

Observation Modeling Learns Spurious Correlations

truth

PNo. 755 . 551 [
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Reconstruction Open-loop Prediction
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Finding 2. Observation modeling as a dominating task can result in
world models establishing spurious correlations without realizing
incorrect reward predictions.

\

Zoom
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Observation Modeling Learns Spurious Correlations
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Hallucinations!

How to mitigate this?
Emphasizing
task-relevant information

( )
Finding 2. Observation modeling as a dominating task can result in

world models establishing spurious correlations without realizing
incorrect reward predictions.
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Observation Modeling Learns Spurious Correlations

Properly balancing the reward loss learns task-
centric representations capable of better predicting

round truth states - .
9 Hallucinations!

B Original weight I Balanced weight

w
o

How to mitigate this?
Emphasizing
task-relevant information

N
o

State Regression Loss (x107°)
o

f

~ Lever Pull Handle Pull Side Hammer
N
Finding 2. Observation modeling as a dominating task can result in
world models establishing spurious correlations without realizing
incorrect reward predictions. )
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Reward Modeling Alone is Not Enough

1004 Lever Pull ] Handle Pull Side . Hammer
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L) = woLo(0) + wr L (0) +waly(H) Limited capability of
(=0) representation learning...
f [ ] [ ] [l [l
Finding 3. Learning signal of world models from rewards alone
without observations is inadequate for sample-efficient model-
based learning.
.
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HarmonyDream

Facilitates representation learning

:
Harmonious interaction |
bet ot 1 | Observation ‘
etween e TWO WO : Modeling -
|
|
|

model tasks
Enhance task-centric representations

Our principle: Losses scaled to the same constant

A straightforward but suboptimal approach

L(0) = wolo(0) + wrLr-(0) + wala(6) X Fluctuate throughout training

w; = S (2) i€ {o,r d} X Sensitive to outlier values
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A Variational Approach and Its Rectification

L(0,00,00,00) = Y H(Li(0),00) i

A "global" reciprocal of
the loss scale

Dynamically but smoothly

29 L—b}
L

0P
(@9

Harmonizers




A Variational Approach and Its Rectification
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Experiments: Extensive Benchmarks and Tasks
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Meta-World RLBench Distracted DMC Variants
Yu et al. CoRL 2020 James et al. IEEE RA-L 2020 Tassa et al. 2018; Zhang et al. 2018

Atari100K Minecraft
Kaiser et al. ICLR 2020 Fan et al. NerulPS 2022
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Main Results: Meta-world & RLBench

Success Rate (%)

Success Rate (%)
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(b) RLBench

By simply adding harmonizers, HarmonyDream demonstrates

superior performance in terms of both sample efficiency and

final success rate
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Main Results: DMC Remastered
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Episode Return

DMCR Cheetah Run

N
o
o

-
o
o

0.2

0.4

0.6

0.8

Environment Steps (x10°)

DMCR Walker Run

400 A

300 1

200+

100 A

00 02 04 06 08 10
Environment Steps (x10°)

(a) Learning curves

On visual generalization benchmark,
HarmonyDream bypasses distractors in
observations and can learn task-centric

transitions more easily.

DMCR Cartpole Balance

DMCR Cheetah Run
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3.01 DreamerV2
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(b) Dynamics loss
$2501(S0) Pgos2(So)

$216(S0)

Ps923(S0)

Visual generalization benchmark: Seven visual factors
randomly initialized on each episode
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Generality to Base Model-based RL Methods

Success Rate (%)
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HarmonyDream exhibits excellent generality to DreamerVs3,
significantly boosting sample efficiency.
Although DreamerPro also leverages a high reward coeff (w,. =

1000), HarmonyDream still performs better on average.
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Harmony DreamerV3 on Atari100K
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Atari 100K (26 tasks)

112
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SimPLe SPR

Harmony DreamerV3

TWM
Methods

IRIS DreamerV3 Ours

significantly improves

DreamerV3's performance,

setting a new state of the art.
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Either matching or surpassing DreamerV3 in

23/26 tested environments.



Harmony DreamerV3 on Minecraft

Success Rate (%)
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Minecraft Hunt Cow
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{|====Harmony DreamerV3

- DreamerV3

20 40 60 80
Environment Steps (x 104)

100

Harmony DreamerV3

successfully learns a

basic skill Hunt Cow
within 1M interactions,

while DreamerVs3 fails.
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Ablation on Rectified Harmonious Loss

DMC Quadruped Run DMC Quadruped Run DMC Quadruped Run
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Comparison to Multi-task Learning Methods

Meta-world Lever Pull RLBench Push Button DMCR Cheetah Run
100 1 100 ]
300
Sew—— HarmonyDream
E 80 /\/ 7| 8 8 =
P DWA P S 001
T 60 NashMTL J T 601 s
14 14 p,
@ 40/ 2 40/ 3
3 3 /\0 2100
S S \ O
A 20- /\/ M 204 '\/' p
0. | ' | . . o LA | | o . . |
0 5 10 15 20 25 0 20 40 00 02 04 06 08 1.0
Environment Steps (X 10%) Environment Steps (x10%) Environment Steps (x10°)
Takeaways:

1. In world model learning, the data in the replay buffer is growing and non-stationary.
Learning statistics may not accurately measure learning progress.

2. Loss coefficients in world model learning needs to be properly rectified. Extreme
loss weights usually leads to inferior performance.

3. HarmonyDream's improvement mainly attributes to balancing two modeling tasks,
instead of solely tuning the dynamics loss.
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Applicability of HarmonyDream

Typical realistic scenarios:

v" Fine-grained task-relevant observations:
Robotics manipulation tasks and video
games require accurately modeling
interactions with small objects.

v' Highly varied task-irrelevant observations:
Redundant visual components can easily
distract visual agents if task-relevant
information is not emphasized correctly.

v" Hybrid of both: More difficult open-world
tasks (e.g., Minecraft) can encounter both,
including small target entities and abundant
visual details.
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Summary

A multi-task view of
world models

mitigate task
domination

A simple yet effective
world model learning
approach
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Open Source

#¥ HarmonyDream  Public

¥ main ~ ¥ 1Branch © 0 Tags

@ Earthring Update method.png
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[ LICENSE

[ README.md

Q Gotofile t + <> Code ~
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About

Code release for "HarmonyDream: Task
Harmonization Inside World Models"
(ICML 2024),
https://arxiv.org/abs/2310.00344

Readme

MIT license
Activity

Custom properties
5 stars

5 watching

< O %0 <+ B

0 forks

https://github.com/thuml/HarmonyDream
Unified implementations of DreamerV2 and DreamerV3 in PyTorch

with plug-and-play HarmonyDream
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Thank Youl!

Researcher who tried HarmonyDream:
"It was super easy to implement”;
mhy22@mails.tsinghua.edu.cn "It works very smoothly"

Contact:

wujialong0229@gmail.com

Machine Learning Group, School of Software, Tsinghua University

http://ise.thss.tsinghua.edu.cn/~mlong/

? 5 . . .
v Tsinghua University
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