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I. Overview

We proposed the state-of-the-art average reward DRL method, RVI-SAC,
and demonstrated its performance through Mujoco experiments.

II. Motivation And Our Goal

• Existing method : In the realm of DRL methods applicable to tasks with high-dimensional
continuous action spaces, methods such as TD3[Fujimoto et al., 2018], SAC[Haarnoja et al.,
2018] are well-known. These methods utilize the discounted reward criterion, which optimizes
the discounted reward sum and uses the bellman equation.
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• Problem of Discounted Reward : However, the discounted reward criterion can lead to a
degradation in performance due to the discrepancy between the training objective and perfor-
mance metrics.

Left: Gymnasium Swimmer-v4 environment, Right: SAC results in the Swimmer environment. These results indicate that the
performance of SAC heavily depends on the value of the discount factor.

• Our Approach : Average Reinforcement Reinforcement Learning is a powerful alternative to
the discounted reward criterion, which optimizes the average reward and uses the average re-
ward bellman equation. Note that the average reward does not depend on the discount factor 𝛾.
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The Average Reward DRL is less explored compared to the discounted reward. Recently, meth-
ods such as ATRPO[Zhang & Ross, 2021], APO[Ma et al.,2021], and ARO-DDPG[Saxena et al.,
2023] have been proposed. However, there are no methods with high sample efficiency like the
state-of-the-art SAC under the discounted reward criterion.

• Our Goal And Contributions : Our goal is to develop the average reward DRL method RVI-
SAC, which solves the issue of discounted rewards and has high sample efficiency. Our contri-
butions are as follows:
1. We propose the average reward DRL method RVI-SAC, which contains three components

that ovecome the challenges of the average reward DRL.
2. Through benchmark experiments using Mujoco, we demonstrate that RVI-SAC exhibits com-

petitive performance compared to existing methods.

III. Proposed Method

Our proposed method consists of the following three components.

i. RVI Q-Learning based Q-Network Update

RVI Q-learning [Abounadi et al., 2001] is one of the average reward Q-learning algorithms, and it
updates the tabular Q-function 𝑄(𝑠, 𝑎) as follows:

𝑄𝑡+1(𝑆𝑡, 𝐴𝑡) = 𝑄𝑡(𝑆𝑡, 𝐴𝑡) + 𝛼𝑡(𝑅𝑡 − 𝑓(𝑄𝑡) + max𝑎′
𝑄𝑡(𝑆𝑡+1, 𝑎′) − 𝑄𝑡(𝑆𝑡, 𝐴𝑡))

Here, 𝑓  is an arbitrary function that satisfies appropriate conditions (e.g., 𝑓(𝑄) =
1
|𝐵|∑𝑠∈𝐵max𝑎𝑄(𝑠, 𝑎) ). Based on this update formula, we propose a new Q-Network update
method by setting the target value 𝑌  and the loss function 𝐿 as follows:

𝜉𝑡+1 = 𝜉𝑡 + 𝛽𝑡(𝑓(𝑄𝜑′) − 𝜉𝑡)

𝑌 (𝑟, 𝑠′) = 𝑟 − 𝜉𝑡 +max𝑎′
𝑄𝜑′(𝑠′, 𝑎′)

Target Value

𝐿(𝜑) =∑
𝐵
(𝑌 (𝑟, 𝑠′) − 𝑄𝜑(𝑠, 𝑎))

2

Loss Function

The update of the above equation 𝜉𝑡 is a newly introduced trick called Delayed f(Q) Update to
stabilize the training of neural networks. Furthermore, we prove the asymptotic convergence of
the proposed method.

Left: Gymnasium Ant-v4 environment, Right: Performance comparison between methods with and without the Delayed f(Q)
Update technique in the Ant environment. These results indicate that the Delayed f(Q) Update stabilizes learning.

ii. Average Reward Soft Policy Improvement Theorem

In SAC, the improvement of the policy with each update is demonstrated using the Soft Policy
Improvement Theorem. However, this theorem is based on the discounted reward, and it does
not hold in the case of the average reward. Therefore, we proved the Average Reward Soft Policy
Improvement Theorem.

Theorem (Average Reward Soft Policy Improvement Theorem):  Let 𝜋old in Π and let 𝜋new
be the optimizer of the minimization problem defined in below. Then 𝜌𝜋new ≥ 𝜌𝜋old  holds.

𝜋new(⋅ |𝑠) = argmin𝜋∈Π
𝐷KL(𝜋(⋅ | 𝑠) |

exp(𝑄𝜋old(𝑠, ⋅))
𝑍𝜋old(𝑠)

)

iii. Automatic Reset Cost Adjustment

Our method is intended to be applied to tasks such as robot locomotion, but it cannot be theoreti-
cally applied to tasks where falling states exist, because the average reward reinforcement learning
assumes continuing task. To adapt the average reward reinforcement learning to these tasks, we
introduced the Reset Cost [Zhang & Ross, 2021] as shown in the following figure.

However, the conventional Reset Cost has the issue of requiring 𝑟cost to be set as a parameter,
with performance depending on its value. Therefore, we propose a method that automatically ad-
justs 𝑟cost by solving an optimization problem that maximizes the average reward 𝜌𝜋 under the
condition that the probability of falling 𝜌𝜋reset is within 𝜀reset.

max
𝜋
𝜌𝜋, s.t. 𝜌𝜋reset ≤ 𝜀reset

IV. Experiments

Swimmer Ant Walker2d

Humanoid Hopper HalfCheetah

We conducted experiments on the Mujoco benchmark tasks to compare the performance of RVI-
SAC with SAC and ARO-DDPG. The results show that RVI-SAC achieves competitive per-
formance compared to existing methods.
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