



#### Ai-Sampler: Adversarial Learning of Markov kernels with involutive maps

Evgenii Egorov\*, Riccardo Valperga\*, Efstratios Gavves
University of Amsterdam





arXiv:2406.02490

# Problem: how to *learn to* sample with better mixing and ESS?

Ai-Sampler



Hamiltonain Monte Carlo



- Markov kernel instead of independent proposal
- Use adversarial loss instead of hand-crafted
- Derived from detailed-balance condition
- Use time-reversible dynamics as deterministic map

The Markov kernel:

$$t_D(x'|x) = \delta(x'-RL_{\theta}(x))r[D(x)]+\delta(x'-x)(1-r[D(x)]).$$

$$\begin{split} D^*(x) &= \\ &= \arg\min\int p(x)r \left[D_{\phi,RL_{\theta}}(x)\right] \log r \left[D_{\phi,RL_{\theta}}(x)\right] dx \\ &= \log\frac{p(RL_{\theta})}{p(x)} J_x^{RL_{\theta}(x)}. \end{split}$$

For such discriminator

$$TV^2[p;t_{D^*}\circ p] = 0$$

Our adversarial objective:

$$\max_{\theta} A_{\theta} = \max_{\theta} \mathbb{E}_{p(x)} \left( r \left[ D_{\phi, RL_{\theta}}(x) \right] \right), \text{ with fixed } \phi$$

$$\min_{\phi} \mathbb{E}_{p(x)} \left( r \left[ D_{\phi, RL_{\theta}}(x) \right] \log r \left[ D_{\phi, RL_{\theta}}(x) \right] \right), \text{ with fixed } \theta.$$

### How to parametrize the discriminator?



For an R-reversible flow, the density ratio between image and preimage is symmetric:

$$\lambda(x) = \log \frac{p(RLx)}{p(x)} J_x^{RL} = -\log \frac{p(RLRLx)}{p(RLx)} J_{RLx}^{RL} = -\lambda(RLx)$$

Equivariance with respect to:

$$\rho_{2n}: C_2 \to GL(\mathbb{R}^{2n} \oplus \mathbb{R}^{2n}), \ \rho_{2n}(g) = \begin{bmatrix} 0 & I_{2n} \\ I_{2n} & 0 \end{bmatrix}$$

This induces a constraint on linear layers:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} 0 & I_{2n} \\ I_{2n} & 0 \end{bmatrix} \begin{bmatrix} RL(x) \\ x \end{bmatrix} = \begin{bmatrix} 0 & I_{2s} \\ I_{2s} & 0 \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} RL(x) \\ x \end{bmatrix}$$



## How to parametrize an R-reversible map?

**Theorem 4.1.** (Valperga et al., 2022) Let  $L: \mathbb{R}^D \to \mathbb{R}^D$  be an R-reversible diffeomorphism<sup>2</sup>, with R being a linear involution. Then, there exists a unique diffeomorphism  $g: \mathbb{R}^D \to \mathbb{R}^D$ , such that  $L = R \circ g^{-1} \circ R \circ g$ . If L is symplectic, then g can be chosen symplectic.

#### Some results:



Figure 7. Adversarial objective and acceptance rate during training. Sample quality increasing during training

| Density | ESS   |           |                   |  |
|---------|-------|-----------|-------------------|--|
|         | HMC   | A-NICE-MC | Ai-sampler (ours) |  |
| mog2    | 0.8   | 355.4     | 1000.0            |  |
| mog6    | 2.4   | 320.0     | 1000.0            |  |
| ring    | 981.3 | 1000.0    | 378.0             |  |
| ring5   | 256.6 | 155.57    | 396.5             |  |

| Donaity | ESS/s  |                   |  |
|---------|--------|-------------------|--|
| Density | HMC    | Ai-sampler (ours) |  |
| mog2    | 0.4    | 1052.6            |  |
| mog6    | 0.98   | 1041.7            |  |
| ring    | 2725.8 | 402.1             |  |
| ring5   | 333.2  | 434.7             |  |



