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Differential Privacy
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Algorithm A > A(X,)

Notion of “adjacent” : TBD

(g, 8)-Differential Privacy (DP) [Dwork et al.0¢]
For all “adjacent” x, X’ and for all E,

Pr[A(x) € E] < € -Pr[A(X') € E]+§



https://people.csail.mit.edu/asmith/PS/sensitivity-tcc-final.pdf

Training models with DP-SGD

A preliminary version of this paper appears in the proceedings of the 28rd ACM Conference on Computer and Communications Security
(CCS 2016). This is a full version.

Deep Learning with Differential Privacy
October 25, 2016

Martin Abadi- Andy Chu- lan Goodfellow!
H. Brendan McMahan* llya Mironov* Kunal Talwar*
Li Zhang*

Total citations  Cited by 5913

‘A.JJJJLL

2016 2017 2018 2019 2020 2021 2022 2023 2024



Training models with SGD (mini-batch version)

I
S (] (] °
) — Starting point:
I
— Differentiable loss f,, : X — R
S, 1
2 Initial state wy
I
. Optimizer Eg Wt < Wt—1 — MGt
o (SGD, Adam, etc.)
Dataset with n training examples:
— e Arrange into batchesS,, ..., S, each of size b
I .
S E— e Assume single epoch:n=b-T
I



Training models with SGD (mini-batch version)

I State
S, C— g % > Vi fu () w1
I (per-example) oes
gradient vectors average

T gradient

7 backprop
S I — Optimizer

1 e

For example,

° W < Wg—1 — Mt * Gt

Return: final model state wr



Training models with DP-SGD

] gt % Z[wawt,1 (z)]c + N(0,0°C?I) State
S, C— =<5, w1

] (per-example)
gradient vectors
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2,-norm
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Adaptive Batch Linear Queries (ABLQ,)

S 1 Construct mini-batches of data each of size b (assume n =b.T) Batch Samp|er
1 —— (S1,...,87) < By(n) B
]
Repeat for stepst=1, ..., T
L ]
L ] Step t
PR —— Adapti
] e Construct query based on previous answers. ; aptive
P X —> B
Yy < Algr, ..., 9-1) Bi= Lnit ball in R? ity method
. e Compute linear query on t-th batch with noise. A
o gt<—z¢t +N00’2I)
mESt
[ ]
Return: (g1,...,97)
L ]
L ] i .
S; % Question: How does privacy cost of ABLQ, depend on batch sampler B?




Construct mini-batches of data each of size b (assume n = b.T) Batch Sampler

Batch Samplers (= " vz B
Deterministic Batches of size b in fixed deterministic order
D o Fort=1,..,T: S;={(t—1)b+1,...,tb}

“Privacy Amplification”

Adding randomness to batch generation can improve privacy.



Construct mini-batches of data each of size b (assume n = b.T) Batch Sampler

Batch Samplers

(S1,...,57) « By(n) B
Deterministic Batches of size b in fixed deterministic order
D e Fort=1,..,T: S;={(t—-1)b+1,...,tb}
Shuffle Batches of size b in random shuffled order for random permutation Tt over [n]
S o Fort=1,.,T: S;={n((t—1)b+1),...,7(th)}

Some form of shuffling is common in practice...

But privacy analysis of ABLQ, is harder due to correlation between batches...



Construct mini-batches of data each of size b (assume n = b.T) Batch Sampler

Batch Samplers

(S1,...,57) « By(n) B
Deterministic Batches of size b in fixed deterministic order
D e Fort=1,..,T: S;={(t—-1)b+1,...,tb}
Shuffle Batches of size b in random shuffled order for random permutation Tt over [n]
S o Fort=1,.,T: S;={n((t—1)b+1),...,7(th)}

Poisson Subsample Each batch independent with expected size b; include each coordinate w.p.b/n

P o Fort=1,..,T:set S, <« ()

. b
o FOFi=1,...,nISt<—{StU{Z} WP Note:ﬁ:%
n

St W.p. 1-— %



Implementation vs Privacy Analysis?

(Shuffling)

[Abadi et al. ‘16]

We perform the computation in batches, then group several
batches into a lot for adding noise. In practice, for efficiency,
the construction of batches and lots is done by randomly per-
muting the examples and then partitioning them into groups
of the appropriate sizes. For ease of analysis, however, we as-
sume that each lot is formed by independently picking each
example with probability ¢ = L/N, where N is the size of
the input dataset.

As is common in the literature, we normalize the running

(Poisson Subsampling)

PyTorch Opacus [Yousefpour et al. ‘21]

Poisson sampling. Opacus also supports uniform sampling of batches (also called Poisson sampling):
each data point is independently added to the batch with probability equal to the sampling rate.
Poisson sampling is necessary in some analyses of DP-SGD [14].

HOW do DP—fy ML? [Ponomareva et al. 423] Igizhzr"i:\i/s;)l/ i:;;?ﬂtee protects the release of all model checkpoints in addition

1F compute dp sgd privacy statement

DP-SGD performed over 10000 examples with 64 examples per iteration, noise
multiplier 2.0 for 5.0 epochs with microbatching, and at most 3 examples per
user.

Example-level DP with add-or-remove-one adjacency at delta = 1le-06 computed with
PLD accounting:

. . . . . Epsilon with each example occurring once per epoch: 12.595
can also amplify privacy Erlingsson et al. (2019a); Feldman et al. (2022), but the best known amplification Epsilon assuming Poisson sampling (*): 1.199
guarantees are weaker than what one would achieve via sampling. It is an important open question to get User-level DP epsilon computation is not supported for PLD accounting at this
comparable RDP/PLD amplification guarantees via shuffling. It is common, though inaccurate, to train time. Use RDP accounting to obtain user-level DP guarantees.
without Poisson subsampling, but to report the stronger DP bounds as if amplification was used. We (*) Poisson sampling is not usually done in training pipelines, but assuming

L) S S o 0 that the data was randomly shuffled, it is believed that the actual epsilon

encourage pra.zctltloners at a minimum to .clea.rly disclose bot.h the data processing a,nd accounting met.h<.)ds i (O e o (B LoD ShoD D CMECrTE R SEImrED o oo Exbey,
(refer to Section 5.3.3 for reporting guidelines). When sampling cannot be guaranteed in the actual training data order.



https://arxiv.org/abs/1607.00133
https://arxiv.org/abs/2303.00654
https://www.tensorflow.org/responsible_ai/privacy/api_docs/python/tf_privacy/compute_dp_sgd_privacy_statement
https://arxiv.org/abs/2109.12298

Adjacency notion for DP

L] e |

Focus in this talk

X
Add-Remove:
X — % X/
[ ] (] X
Substitution:

x % x’
[Kairouz et al. 2021] x
Zeroing-Out:

!/

x — x' X

L] e |
HEEEETEEN

ABLQ,, typically analyzed for
add-remove adjacency.

Does not make sense for ABLQ,,
and ABLQ, since it assumes n = b-T.

Compatible with ABLQ,, ABLQ,, ABLQ,,
but not standard for ABLQ,.

Replace by “ghost example™ L,
such that (L) = 0.

Analysis for ABLQ,, is identical.



https://arxiv.org/abs/2103.00039

Sneak-peak at results

£5(6) =smallest € such that ABLQ, satisfies (g, 5)-DP, 6,(€) is similarly defined.
for any adaptive query method A.

Fix: T= 100,000, 5 =10,
Plot £ ,(8) for varying o.

125 Deterministic Batch Sampler D

e §,(¢) : nearly closed form expression.

e ¢ (8):determined e.g. by binary search.

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
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Sneak-peak at results
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£5(6) =smallest € such that ABLQ, satisfies (g, 5)-DP,

for any adaptive query method A.

Fix: T= 100,000, 5 =10,
Plot £,(8) for varying o.

6,(€) is similarly defined.

—— &p
—=— ¢&p (upper: RDP)

<« c :1 github. ,_accoun ﬂngl % 2 E O 60O
[ Files differential-privacy / python / dp_accounting / 1
# main . . . .
' Differential Privacy Accounting
Q Gotofile

| v & dp_accounting

v @ dp_accounting

> @ pld

> W rdp
O BuILD.bazel
O _init_py
[ dp_event.py
[ dp_event_builderpy

This directory contains tools for tracking differential privacy budgets, available as part of the Google differential
privacy library.

The set of DpEvent classes allow you to describe complex differentially private mechanisms such as Laplace and
Gaussian, and their 15. The PrivacyAccountant classes can ingest DpEvents
and return the €, & of the composite mechanism. Privacy Loss Distributions (PLDs) and RDP accounting are
currently supported.

Our library only support Python version >= 3.9. We test this library on Linux with Python version 3.9. If you
experience any problems, please file an issue on GitHub, also for other platforms or Python versions.

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

o)

Poisson Batch Sampler P

8,,(€), £,(8) : Upper bound using Rényi-DP.

(~ Moments Accountant used by Abadi et al “16)




Sneak-peak at results
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£5(6) =smallest € such that ABLQ, satisfies (g, 5)-DP,

for any adaptive query method A.

Fix: T= 100,000, 5 =10,
Plot £,(8) for varying o.

6,(€) is similarly defined.

—-—— &p
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—=— ¢&p (upper: RDP)
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[ Files differential-privacy / python / dp_accounting / 1
# mai 2 7 3 N

= Differential Privacy Accounting
Q Gotofile

| v & dp_accounting

v & dp_accounting

> @ pld

> W rdp
O BuILD.bazel
O _init_py
[ dp_event.py
[ dp_event_builderpy

This directory contains tools for tracking differential privacy budgets, available as part of the Google differential
privacy library.

The set of DpEvent classes allow you to describe complex differentially private mechanisms such as Laplace and
Gaussian, and their 15. The PrivacyAccountant classes can ingest DpEvents
and return the €, & of the composite mechanism. Privacy Loss Distributions (PLDs) and RDP accounting are
currently supported.

Our library only support Python version >= 3.9. We test this library on Linux with Python version 3.9. If you
experience any problems, please file an issue on GitHub, also for other platforms or Python versions.

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

o)

Poisson Batch Sampler P

8,,(€), £,(8) : Upper bound using Rényi-DP.

(~ Moments Accountant used by Abadi et al “16)

8,,(€), £,(8) : Upper/lower bounds using PLD

(Numerically tight accounting using Privacy Loss Distributions)




Sneak-peak at results

£5(6) =smallest € such that ABLQ, satisfies (g, 5)-DP, 6,(€) is similarly defined.
for any adaptive query method A.

Fix: T= 100,000, 5 =10,
Plot £ ,(8) for varying o. Key takeaways:

e Shuffling does not provide much amplification for small o.
e Need to be careful in reporting privacy parameters for DP-SGD!

20.0 —— &p
17.5 —— &p (upper: PLD)
150 —a— ¢p (upper: RDP)
—+— &5 (lower bound)
125 AN ’ Shuffle Batch Sampler S

e §,(g) : New technique to prove lower bound.

e £.(8):determined e.g. by binary search

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

(o)



Privacy lower bound for ABLQ,

(g, 8)-Differential Privacy (DP) [Dwork et al.06]
For all “adjacent” x,x’ and for all E, Pr[A(x) € E] < ¢° -Pr[A(X') € E] +§

x & Gradient of one example is +1 at step t, others are -1 E.={w:max,w,=2C}
x < Same but with this example’s gradients zeroed out

—— &p C
—— &p (upper: PLD)
—=— ¢&p (upper: RDP) i R e b
&s (lower bound) '

12.5 @
W 10.0
7.5 @
5.0 @ @ .

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
o


https://people.csail.mit.edu/asmith/PS/sensitivity-tcc-final.pdf

Summary

Need to be careful in reporting privacy parameters!
Not much amplification from shuffling for small o

Future Steps?

Privacy Accounting for ABLQ;

O

o

O

o

Only give a rigorous lower bound

Conjecture a tightly dominating pairs for upper bound
Unclear how to compute € efficiently

Upcoming work: Implementation of Poisson subsampling at scale.
Methods that don’t rely on amplification

DP-FTRL [Kairouz et al ‘21], DP-MF [McMahan et al ‘23]

20

15

W 10

—o— £p

—¥— ¢&p (upper: PLD)
—&— ¢&p (upper: RDP)
—+— €5 (lower bound)

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

o



http://proceedings.mlr.press/v139/kairouz21b.html
https://arxiv.org/abs/2202.08312

