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“recommender systems … is the single largest 
software engine on the planet”


— Jensen Huang, NVIDIA, 02/22/2024 (*)


https://youtu.be/watch?v=txOv_pi-_R4&t=2020s
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“recommender systems … is the single largest 
software engine on the planet”


— Jensen Huang, NVIDIA, 02/22/2024 (*)


* when referring to models ~100x less complex than what 
we are presenting in this talk

https://youtu.be/watch?v=txOv_pi-_R4&t=2020s


Generative Recommenders (GRs) reinterpret main 
RecSys tasks within a generative framework. 

Together with new algorithms like HSTU and M-
FALCON, we’ve improved training & inference 
efficiency by 10x-1000x vs SotA. 

GRs and HSTU have enabled 12.4%+ topline 
metric gains, and demonstrate scaling law in 
industrial-scale RecSys for the first time, up to 
LLM compute scale.
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I. Background: Deep Learning 
Recommendation Models (DLRMs) and 

Generative Models



State of the World: DLRMs & Generative Models

DLRMs: classical IR paradigm (retrieval + ranking) with DNNs
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Image credit: Covington et al. Deep Neural Networks for YouTube Recommendations. RecSys'16.

(a) Retrieval. (b) Ranking.



State of the World: DLRMs & Generative Models

Numerous improvements to DLRMs over past decade

• Feature interactions (FMs, DCN, AutoInt, DHEN/Wukong, MaskNet, …)


• Multi-task learning (MMoE, ESMM, PLE, …)


• Sequential (sub-)modules (one-stage DIN, BST, hybrid UBM, SIM, …)


• Debiasing (off-policy correction / REINFORCE, IPW / CLRec, …)


• Beyond two-tower settings (multi-interest / MIND, beam search / “generative 
retrieval” / TDM, OTM, DR, learned similarities / MoL, …)


• …
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State of the World: DLRMs & Generative Models

Generative Models (in particular LLMs)

• Many explored use cases in RecSys:


• In-context Learning (e.g., LLMRank, …)


• Instruction Tuning (e.g., M6-Rec, TALLRec, …)


• Transfer Learning utilizing World Knowledge (e.g., NoteLLM, …)


• …
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DLRMs + Generative Models: How do we get the best of both worlds?

Classical recommendation models — DLRMs — vs LLMs
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• Pros of LLMs


• Replace feature engineering, to the extent capturable by language;


• World knowledge benefits cold-start scenarios;


• Scale with compute.


• Pros of DLRMs


• Leverage vast number of human-engineered features;


• Concise representations — efficient and support very long context sizes;


• Scale with (in-domain recommendation) data.



DLRMs + Generative Models: How do we get the best of both worlds?

Should we build next-gen RecSys on top of LLMs?
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• World knowledge primarily benefits cold-start…


• Needs more work to outperform collaborative 
filtering approaches, even on MovieLens-1M.

Image Credits: top: Hou et al. Large Language Models are Zero-Shot Rankers for Recommender Systems. ECIR’24.

(Best known ML-1M NDCG@10 as of 05/2024 is 18.9 (paperswithcode), vs LLM zero-shot 6.91)


Bottom: Chang et al. TWIN: TWo-stage Interest Network for Lifelong User Behavior Modeling in CTR Prediction at Kuaishou. KDD’23.

https://paperswithcode.com/sota/collaborative-filtering-on-movielens-1m
https://arxiv.org/abs/2305.08845


DLRMs + Generative Models: How do we get the best of both worlds?

Should we build next-gen RecSys on top of LLMs?

• Tokenization needs to become orders of magnitude 
more efficient…


• DLRMs often need to handle 10K-100K scale history.
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• World knowledge primarily benefits cold-start…


• Needs more work to outperform collaborative 
filtering approaches, even on MovieLens-1M.
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DLRMs + Generative Models: How do we get the best of both worlds?

What about a deeper integration… like a “generative” DLRM??

• Features: vast number (1K-10K scale); lack explicit 
structures.


• Vocabulary: billion-scale continuously updated in a 
streaming setting. Invalidates assumptions in LMs 
(100K scale static vocabulary). 


• Cost: large models utilize huge amount of training 
data. 300B tokens in GPT-3, 15T in LLaMa-3…
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DLRMs + Generative Models: How do we get the best of both worlds?

What about a deeper integration… like a “generative” DLRM??

• Features: vast number (1K-10K scale); lack explicit 
structures.


• Vocabulary: billion-scale continuously updated in a 
streaming setting. Invalidates assumptions in LMs 
(100K scale static vocabulary).  


• Cost: large models utilize huge amount of training 
data. 300B tokens in GPT-3, 15T in LLaMa-3…


• RecSys generates 100T-1000T tokens every day!
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II. Our Solution: DLRMs + Generative 
Models => Generative Recommenders



Revisiting Formulations: Why Did Prior Sequential Approaches Fail? 

How were sequential information utilized previously?

• Academic research - sequential recommenders 
(e.g., GRU4Rec*, SASRec*, BERT4Rec, …)


• -> 


• => (causal autoregressive*) pointwise retrieval
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• Industrial research - DLRMs with sequential 
(sub-)modules (DIN, BST, SIM, …)


• -> 


• => pointwise ranking

Revisiting Formulations: Why Did Prior Sequential Approaches Fail? 

How were sequential information utilized previously?

• Academic research - sequential recommenders 
(e.g., GRU4Rec*, SASRec*, BERT4Rec, …)


• -> 


• => (causal autoregressive*) pointwise retrieval
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Image credit: (bottom) Zhou et al. Deep Interest Network for Click-Through Rate Prediction. KDD’18.



Revisiting Formulations: Why Did Prior Sequential Approaches Fail? 
Critical expressiveness gap between sequential recommenders & DLRMs
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• Features, and … lots of them!


• Need to engineer and to utilize a very large number 
of features (often 10K scale, vs ~1 in trad. 
sequential settings)



Revisiting Formulations: Why Did Prior Sequential Approaches Fail? 
Critical expressiveness gap between sequential recommenders & DLRMs

13
Image credit: Naumov et al. Deep Learning Recommendation Model for Personalization and Recommendation Systems. 2019.

• Features, and … lots of them!


• Need to engineer and to utilize a very large number 
of features (often 10K scale, vs ~1 in trad. 
sequential settings)

• This is why feature interaction has been the primary 
research focus in DLRMs (DeepFM, AFM, xDeepFM, 
DCN, AutoInt, DHEN, MaskNet, …)!



Revisiting Formulations: Why Did Prior Sequential Approaches Fail? 
Critical expressiveness gap between sequential recommenders & DLRMs

• Features, and … lots of them!


• Need to engineer and to utilize a very large number 
of features (often 10K scale, vs ~1 in trad. 
sequential settings)
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Image credit: Naumov et al. Deep Learning Recommendation Model for Personalization and Recommendation Systems. 2019.

• Examples


• Good prior for pCTR on a travel video? => user’s historical CTR!


• Am I likely to share a Los Gatos restaurant video to my friends? 
Check the bay area restaurant videos I’ve engaged with the past … 

• This is why feature interaction has been the primary 
research focus in DLRMs (DeepFM, AFM, xDeepFM, 
DCN, AutoInt, DHEN, MaskNet, …)!



DLRMs + Generative Models => Generative Recommenders (GRs)
How do we close this gap and make sequential methods work?

14

• We have a related solution: “target-aware 
attention”, widely used in most industrial DLRMs…


• Pairwise/cross attention could help with 
extracting categorical/numerical cross features!

Image credit: (top) Zhai et al. Actions Speak Louder than Words: Trillion-Parameter Sequential Transducers for Generative Recommendations. ICML’24. 

(bottom) Zhou et al. Deep Interest Network for Click-Through Rate Prediction. KDD’18.



DLRMs + Generative Models => Generative Recommenders (GRs)
How do we close this gap and make sequential methods work?

• We have a related solution: “target-aware 
attention”, widely used in most industrial DLRMs…


• Pairwise/cross attention could help with 
extracting categorical/numerical cross features!
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Image credit: (top) Zhai et al. Actions Speak Louder than Words: Trillion-Parameter Sequential Transducers for Generative Recommendations. ICML’24. 

(bottom) Zhou et al. Deep Interest Network for Click-Through Rate Prediction. KDD’18.

• But this doesn’t quite scale…


• Common pairwise attention in DLRMs utilizes 1-2 
layers — limited model capacity;


• “target-aware attention” requires the traditional 
impression (“target”)-based training setting — 
slows down training by an O(N) factor!



DLRMs + Generative Models => Generative Recommenders (GRs)
Enabling fully sequential large-scale models: Generative Recommenders

• “Actions Speak Louder Than Words”: from word(piece)s as 
tokens to (high cardinality, non-stationary) actions as tokens;


• user actions as a new modality in generative modeling.


• Addresses expressiveness constraints w/ traditional 
sequential recommenders; 

• Interleaves contents and actions in a unified time series.


• Encodes other features as slow-changing time series.


• Closes quality gaps between academic research and DLRMs.


• Amortizes compute cost via interleaving+generative training.

(b) Generative Recommenders.

Models joint distribution of 

(a) Sequential Recommenders. 

Models conditional distribution of 
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DLRMs + Generative Models => Generative Recommenders (GRs)
Enabling fully sequential large-scale models: Generative Recommenders

• Actions Speak Louder Than Words: words as tokens => actions as tokens


• Addresses expressiveness constraints w/ traditional sequential recommenders


• Amortizes compute cost via interleaving+generative training
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(a) Sequential Recommenders. 

Models conditional distribution of 

(b) Generative Recommenders.

Models joint distribution of (c) DLRMs vs Generative Recommenders.



Enabling fully sequential large-scale models: Generative Recommenders
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(a) Sequential Recommenders. 

Models conditional distribution of 

(b) Generative Recommenders.

Models joint distribution of 

(d) Comparisons of DLRMs w/ sequential sub-modules,

traditional sequential approaches in academic settings, and Generative Recommenders (GRs).

• Actions Speak Louder Than Words: words as tokens => actions as tokens


• Addresses expressiveness constraints w/ traditional sequential recommenders


• Amortizes compute cost via interleaving+generative training

DLRMs + Generative Models => Generative Recommenders (GRs)



• target-aware autoregressive setting significantly improves performance!

DLRMs + Generative Models => Generative Recommenders (GRs)
Enabling fully sequential large-scale models: Generative Recommenders
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Offline & Online Metric comparisons in ranking setting, with

a) DLRMs (w/ target-aware sequential sub-modules), b) traditional Sequential Recommender 

settings (e.g., GRU4Rec, SASRec), and c) Generative Recommenders (GRs).

E-task is the main “engagement” task and C-task is the main “consumption” task.

Image credit (slide 13-16): Zhai, Liao, Liu, Wang, Li, et al. Actions Speak Louder than Words:

Trillion-Parameter Sequential Transducers for Generative Recommendations. ICML’24.



III. New Algorithms: Accelerating Training 
& Inference by 10x-1000x for Generative 

Recommenders



Training - HSTU: Better Quality & 15x Faster vs Transformers
HSTU: Hierarchical Sequential Transduction Units

• Pointwise aggregated (normalized) attention; 


• Fusing self-attention and MLPs via element-
wise gating to reduce compute;


• Grouped GEMM kernel extending memory-
efficient attention (Rabe & Staats, 2021) and 
FA (Dao et al., 2022) to leverage sparsity;


• Stochastic Length (SL) further algorithmically 
increases sparsity, reducing complexity to 
O(Nαd) for             .
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Training - HSTU: Better Quality & 15x Faster vs Transformers
HSTU significantly outperforms Transformers in various settings…

• HSTU outperforms Transformers and various baselines on 
synthetic, public datasets, and industrial-scale Generative 
Recommender settings …
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Training - HSTU: Better Quality & 15x Faster vs Transformers
… and achieves 15x Training Speedup on 8K sequences!

• HSTU outperforms Transformers and various baselines on 
synthetic, public datasets, and industrial-scale Generative 
Recommender settings …


• … while being 15x faster vs FlashAttention2 (SotA 
implementation as of 05/2024) on 8k sequences during training, 
due to HSTU design + SL-induced sparsity.
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Inference - M-FALCON: 900x Speedup vs SotA DLRMs
Microbatched-Fast Attention Leveraging Cachable OperatioNs
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EPISODE X: A NEW FRONTIER IN SPEED 
IN A PERIOD OF TECHNOLOGICAL 
REVOLUTION, SCIENTISTS HAVE 
DISCOVERED A WAY TO ACHIEVE A 1000X 
INFERENCE SPEEDUP FOR INDUSTRIAL-
SCALE RECSYS.

AMIDST THE VAST DIGITAL COSMOS, THE 
POWERFUL M-FALCON STARSHIP 
ALGORITHM EMERGES AS THE BEACON OF 
HOPE, PROMISING TO AUGMENT DECISION 
MAKING PROCESSES ON ONLINE CONTENT 
AND E-COMMERCE PLATFORMS THROUGH 
GENERATIVE RECOMMENDERS…



Inference - M-FALCON: 900x Speedup vs SotA DLRMs
Batched Target-Aware Inference + Microbatching + KV Caching

22

M-FALCON leverages three key insights:


• Batched inference enables compute 
sharing, and can be efficiently applied to 
target-aware autoregressive settings;


• Microbatching scales batched inference 
to 10K+ candidates;


• Encoder-level caching eliminates 
redundant ops within & across requests.



Inference - M-FALCON: 900x Speedup vs SotA DLRMs
Batched Target-Aware Inference + Microbatching + KV Caching
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M-FALCON leverages three key insights:


• Batched inference enables compute 
sharing, and can be efficiently applied to 
target-aware autoregressive settings;


• Microbatching scales batched inference 
to 10K+ candidates;


• Encoder-level caching eliminates 
redundant ops within & across requests.


These combined enables serving a 285x 
more complex GR model at 3x QPS!



IV. Scaling Law for Recommendation Systems, 
in Industrial-scale Production Settings 



Compute growth of RecSys have lagged behind other fields… 
& historically, DLRMs don’t scale well with compute

• Many Deep Learning Models, esp. LLMs, benefit from scaling law, where 
losses etc. scale as a power-law of compute.


• Nevertheless, DLRMs generally scale with data but less well with compute…
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Scaling Law for LLMs.

Image credit: Kaplan et al. Scaling Laws for Neural 

Language Models. 2020

Compute Usage Trends for major Deep Learning Models 
and representative DLRMs, before GRs (this work).



Scaling Law with Generative Recommenders, up to LLM scale
GRs demonstrate scaling law in industrial-scale RecSys for the first time!

• … across all major metrics, up to GPT-3 175b/LLaMa-2 70b scale!

25

Scalability comparison of DLRMs vs Generative Recommenders (GRs). left: HR@100 (retrieval), right: Normalized 
Entropy (ranking). +0.005 in HR and -0.001 in NE represent significant improvements.



Scaling Law with Generative Recommenders, up to LLM scale
GRs demonstrate scaling law in industrial-scale RecSys for the first time!

• This enables double-digit topline gains in production settings…


• … while using less inference resources!
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Thank You / Recap
• Generative Recommenders (GRs) reinterpret main RecSys tasks within a 

generative framework, unifying heterogeneous feature spaces, while 
addressing expressiveness constraints in traditional sequential settings.


• HSTU outperforms SotA baselines by 65.8% in NDCG, and offers a 15x 
training speedup vs Transformers on 8k length sequences. M-FALCON 
further enables a 900x speedup vs DLRMs at inference time.


• HSTU-based Generative Recommenders, with 1.5 trillion params, improve 
online metrics by 12.4%+. We observe scaling law in industrial-scale 
recommendation systems for the first time, up to GPT-3 175b/LLaMa-2 70b 
compute scale, which represents a potential ChatGPT moment for RecSys.

For more information / references: Actions Speak Louder than Words: Trillion-Parameter 
Sequential Transducers for Generative Recommendations. ICML’24. arXiv: 2402.17152,

github: facebookresearch/generative-recommenders. & We’re hiring! MetaCareers, etc.
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https://arxiv.org/abs/2402.17152
https://github.com/facebookresearch/generative-recommenders
https://www.metacareers.com/v2/jobs/917648072656133/


… & implications beyond scale?

• “recommender systems … is the single largest 
software engine on the planet” — Jensen Huang, 
NVIDIA, 02/22/2024 (*) 

* - when referring to models ~100x less complex vs 
what we just presented


• What about implications beyond scale? 
• Deprecation of large number of features enables 

privacy-friendly next-generation systems

• Fully sequential settings better aligns incentives 

of platforms (& the web!) with the users

• …
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For more information / references: Actions Speak Louder than Words: Trillion-Parameter 
Sequential Transducers for Generative Recommendations. ICML’24. arXiv: 2402.17152,

github: facebookresearch/generative-recommenders. & We’re hiring! MetaCareers, etc.

https://arxiv.org/abs/2402.17152
https://github.com/facebookresearch/generative-recommenders
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