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https://prs2024.splashthat.com/
https://generative-rec.github.io/workshop/

“recommender systems ... IS the single largest

software engine on the planet”
— Jensen Huang, NVIDIA, 02/22/2024 (%)
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https://youtu.be/watch?v=txOv_pi-_R4&t=2020s

“recommender systems ... IS the single largest

software engine on the planet”
— Jensen Huang, NVIDIA, 02/22/2024 (*)

* when referring to models ~100x less complex than what
we are presenting in this talk
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https://youtu.be/watch?v=txOv_pi-_R4&t=2020s

Generative Recommenders (GRs) reinterpret main
RecSys tasks within a generative framework.

Together with new algorithms like HSTU and M-
FALCON, we’ve improved training & inference
efficiency by 10x-1000x vs SotA.

GRs and HSTU have enabled 12.4%+ topline
metric gains, and demonstrate scaling law In
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Industrial-scale ReCSyS for the first time, up to Figure 1. Total compute used to train deep learning models over

LLM compute scale.

the years. DLRM results are from (Mudigere et al., 2022); GRs are
deployed models from this work. DLRMs/GRs are continuously

trained 1n a streaming setting; we report compute used per year.
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|. Background: Deep Learning
Recommendation Models (DLRMs) and
Generative Models



State of the World: DLRMs & Generative Models

DLRMs: classical IR paradigm (retrieval + ranking) with DNNs
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(a) Retrieval.

Image credit: Covington et al. Deep Neural Networks for YouTube Recommendations. RecSys'16.
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State of the World: DLRMs & Generative Models

Numerous improvements to DLRMs over past decade

* Feature interactions (FMs, DCN, Autolnt, DHEN/Wukong, MaskNet, ...)
* Multi-task learning (MMoE, ESMM, PLE, ...)

e Sequential (sub-)modules (one-stage DIN, BST, hybrid UBM, SIM, ...)

* Debiasing (off-policy correction / REINFORCE, IPW / CLRec, ...)

 Beyond two-tower settings (multi-interest / MIND, beam search / “generative
retrieval” / TDM, OTM, DR, learned similarities / MolL, ...)
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State of the World: DLRMs & Generative Models

Generative Models (in particular LLMs)

 Many explored use cases in RecSys:
* |n-context Learning (e.g., LLMRank, ...)
* |nstruction Tuning (e.g., M6-Rec, TALLRec, ...)
* Transfer Learning utilizing World Knowledge (e.g., NoteLLM, ...)
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DLRMs + Generative Models: How do we get the best of both worlds?

Classical recommendation models — DLRMs — vs LLMs

* Pros of LLMs
* Replace feature engineering, to the extent capturable by language;
 World knowledge benefits cold-start scenarios;

* Scale with compute.

* Pros of DLRMs
* |Leverage vast number of human-engineered features;
* Concise representations — efficient and support very long context sizes;

* Scale with (in-domain recommendation) data.
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DLRMs + Generative Models: How do we get the best of both worlds?

Should we build next-gen RecSys on top of LLMs?

ML-1M

 World knowledge primarily benefits cold-start... Method = NOB NO10 NO20
~ Pop 0.08 1.20 4.13 579
 Needs more work to outperform collaborative £

filtering approaches, even on MovielLens-1M.

BM25 [50] 0.26 0.87 2.32  5.28
UniSRec [30] 0.88 3.46 5.30  6.92
VQ-Rec [29] 0.20 1.60 3.29 5.73

ero-shot

‘

Ours 1.74 5.22 6.91 7.90

Image Credits: top: Hou et al. Large Language Models are Zero-Shot Rankers for Recommender Systems. ECIR’24.
(Best known ML-1M NDCG@10 as of 05/2024 is 18.9 (paperswithcode), vs LLM zero-shot 6.91)
Bottom: Chang et al. TWIN: TWo-stage Interest Network for Lifelong User Behavior Modeling in CTR Prediction at Kuaishou. KDD’23.

O\ Meta Al 9



https://paperswithcode.com/sota/collaborative-filtering-on-movielens-1m
https://arxiv.org/abs/2305.08845

DLRMs + Generative Models: How do we get the best of both worlds?

Should we build next-gen RecSys on top of LLMs?

ML-1M

 World knowledge primarily benefits cold-start... Method Lo NG5 NG NG

Pop 0.08 1.20 4.13 5.79

* Needs more work to outperform collaborative
filtering approaches, even on MovielLens-1M. BM25 [50] 026 087 232 528

UniSRec [30] 0.88 3.46 5.30  6.92
VQ-Rec [29] 020 1.60 3.29  5.73

Ours 1.74 5.22 6.91 7.90
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Image Credits: top: Hou et al. Large Language Models are Zero-Shot Rankers for Recommender Systems. ECIR’24.
(Best known ML-1M NDCG@10 as of 05/2024 is 18.9 (paperswithcode), vs LLM zero-shot 6.91)
Bottom: Chang et al. TWIN: TWo-stage Interest Network for Lifelong User Behavior Modeling in CTR Prediction at Kuaishou. KDD’23.
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https://paperswithcode.com/sota/collaborative-filtering-on-movielens-1m
https://arxiv.org/abs/2305.08845

DLRMs + Generative Models: How do we get the best of both worlds?

What about a deeper integration... like a “generative” DLRM??

 Features: vast number (1K-10K scale); lack explicit
structures.

* Vocabulary: billion-scale continuously updated in a
streaming setting. Invalidates assumptions in LMs
(100K scale static vocabulary).

* Cost: large models utilize huge amount of training
data. 300B tokens in GPT-3, 15T in LLaMa-3...
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DLRMs + Generative Models: How do we get the best of both worlds?

What about a deeper integration... like a “generative” DLRM??

 Features: vast number (1K-10K scale); lack explicit
StrUCtU reS. * DLRMs (if sequentialized like LMs) @ Language Models

1000000 e

apys . . DLRM-23 (est.)
* Vocabulary: billion-scale continuously updated in a oo

x LLaMa-3 (15T tokens!)

streaming setting. Invalidates assumptions in LMs 2 1000 2170 o or ot
(100K scale static vocabulary). e .
S GPT-3(300B tokens)
S 0
* Cost: large models utilize huge amount of training - TS (348 okens)
data. 300B tokens in GPT-3, 15T in LLaMa-3... 0 ore 2020 2022 2024

Year

 RecSys generates 100T-1000T tokens every day!
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ll. Our Solution: DLRMs + Generative
Models => Generative Recommenders




Revisiting Formulations: Why Did Prior Sequential Approaches Fail?

How were sequential information utilized previously?

-

Supervision (Expected
Next Item (I_)il

Prediction Layer

 Academic research - sequential recommenders

(e.g., GRU4Rec*, SASRec*, BERT4Rec, ...) st Aenion Bk
o (¢07 0/0), Cee (¢’i—17 a”i—l)'_> q)z (with optional MLPs)
 => (causal autoregressive®) pointwise retrieval
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Revisiting Formulations: Why Did Prior Sequential Approaches Fail?

How were sequential information utilized previously?

Supervision (Expected
Next Item (I_)il

Prediction Layer

 Academic research - sequential recommenders
(e.g., GRU4Rec*, SASRec*, BERT4Rec, ...) —

Embedding Layers

o (q:)O, a/()), c .oy (@i_]_, a,i_]_)._> (I),L (with optional MLPs)

Training Input
Token Sequence

* => (causal autoregressive®) pointwise retrieval

Activatiofn Weight

I
|PReLU /Dilce (80|
[PReLU/Dice (200) [ PRelu/Dice (36) |
[ ] ] "] N I
am oomam ( Concat )
* Industrial research - s with sequentia T f
B _ o Em
} ' .
b = A #
) . Out
sub-)modules (DIN, BST, SIM (S poting) produce
, , , E N — —— L ) )
' ’ X N m
Goods 1 Weight |G 2 Weight Goods N Weight | |74 from User  Inputs From
" Activation Activation Activation Activation Unit
_ Unit J1 L Unit ) L Unit
( a ) ( a ) ) t ! t X' Product
—_— — @ al [ W ] EEE EEE . EREHE = [ W ]
® O’ O R v 1’ v 1 ) v _> v Concat ] (Concat ) (Concat) . [Concat ) (Concat) (Concat] g (;(::)dSIIDD
TR T TR TR TTE mew © Cate I
[ I | N . ®HER al " NN O Other ID
b0 000 0060 060 060 60.0 | R
. . . User Profile Goods 1 Goods 2 - Goods N Candidate Context
e =>pointwiseranking ~  rews e
Deep Interest Network

Image credit: (bottom) Zhou et al. Deep Interest Network for Click-Through Rate Prediction. KDD’18.
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Revisiting Formulations: Why Did Prior Sequential Approaches Fail?

Critical expressiveness gap between sequential recommenders & DLRMs

MOARIEERATUI

* Features, and ... lots of them! v

* Need to engineer and to utilize a very large number
of features (often 10K scale, vs ~1 in trad.
sequential settings)
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Revisiting Formulations: Why Did Prior Sequential Approaches Fail?

Critical expressiveness gap between sequential recommenders & DLRMs

MOARIEERATUI

* Features, and ... lots of them! v

* Need to engineer and to utilize a very large number
of features (often 10K scale, vs ~1 in trad.

sequential settings)

* This is why feature interaction has been the primary
research focus in DLRMs (DeepFM, AFM, xDeepFM,
DCN, Autolnt, DHEN, MaskNet, ...)!

dense features sparse features

Image credit: Naumov et al. Deep Learning Recommendation Model for Personalization and Recommendation Systems. 2019.
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Revisiting Formulations: Why Did Prior Sequential Approaches Fail?

Critical expressiveness gap between sequential recommenders & DLRMs

MOARIEERATUI

* Features, and ... lots of them! v

* Need to engineer and to utilize a very large number
of features (often 10K scale, vs ~1 in trad.
sequential settings)

* This is why feature interaction has been the primary A
research focus in DLRMs (DeepFM, AFM, xDeepFM, .

DCN, Autoint, DHEN, MaskNet, ...)! kk\ )J

A AA

 Examples

e Good prior for pCTR on a travel video? => user’s historical CTR!

« Am | likely to share a Los Gatos restaurant video to my friends? D - - _

Check the bay area restaurant videos I’ve engaged with the past ...

dense features sparse features

Image credit: Naumov et al. Deep Learning Recommendation Model for Personalization and Recommendation Systems. 2019.
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DLRMs + Generative Models => Generative Recommenders (GRs)

How do we close this gap and make sequential methods work?

 We have a related solution: “target-aware 0 (Q(X VK (X)" + rabp’t) V(X)
attention”, widely used in most industrial DLRMSs...

[ )
_

SUM Pooling

* Pairwise/cross attention could help with
extracting categorical/numerical cross features! X X B

Goods 1 Weight @ Goods 2 Weight

| Activation | Activation = Activation
Unit J | Unit - | Unit
t t ¢
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'Concat Concat - Concat Concat
[ . M ‘ Il ‘ 1
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qugs 1 Goods 2 - GOSE§ N Candidate
User Behaviors Ad

Image credit: (top) Zhai et al. Actions Speak Louder than Words: Trillion-Parameter Sequential Transducers for Generative Recommendations. ICML’24.
(bottom) Zhou et al. Deep Interest Network for Click-Through Rate Prediction. KDD’18.

O\ Meta Al 14



DLRMs + Generative Models => Generative Recommenders (GRs)

How do we close this gap and make sequential methods work?

 We have a related solution: “target-aware b2 (Q(X VK (X)" + rabp’t) V(X)
attention”, widely used in most industrial DLRMSs...
» Pairwise/cross attention could help with s
extracting categorical/numerical cross features! X - | X |
Goods 1 Weight | Goods 2 Weight Goods N Weight
. , ] " Activation Activation Activation
 But this doesn't quite scale... Lyt ‘ it ] - | Lt
. . ] . o Eo;\c;t Cor_wcat Cor;cat Concat
* Common pairwise attention in DLRMs utilizes 1-2 0 0 BT Ti1
layers — limited model capacity; $od ool ool ool
Goo\ds 1 Goods 2 Gogd/s N Caﬁte
User Behaviors Ad

e “target-aware attention” requires the traditional
impression (“target”)-based training setting —
slows down training by an O(N) factor!

Image credit: (top) Zhai et al. Actions Speak Louder than Words: Trillion-Parameter Sequential Transducers for Generative Recommendations. ICML’24.
(bottom) Zhou et al. Deep Interest Network for Click-Through Rate Prediction. KDD’18.
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DLRMs + Generative Models => Generative Recommenders (GRs)

Enabling fully sequential large-scale models: Generative Recommenders

 “Actions Speak Louder Than Words”: from word(piece)s as
tokens to (high cardinality, non-stationary) actions as tokens;

e user actions as a new modality in generative modeling.

« Addresses expressiveness constraints w/ traditional
sequential recommenders;

 |nterleaves contents and actions in a unified time series.

 Encodes other features as slow-changing time series.

* Closes quality gaps between academic research and DLRMSs.

« Amortizes compute cost via interleaving+generative training.
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DLRMs + Generative Models => Generative Recommenders (GRs)

Enabling fully sequential large-scale models: Generative Recommenders

* Actions Speak Louder Than Words: words as tokens => actions as tokens

 Addresses expressiveness constraints w/ traditional sequential recommenders

 Amortizes compute cost via interleaving+generative training
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DLRMs + Generative Models => Generative Recommenders (GRs)

Enabling fully sequential large-scale models: Generative Recommenders

* Actions Speak Louder Than Words: words as tokens => actions as tokens

 Addresses expressiveness constraints w/ traditional sequential recommenders

 Amortizes compute cost via interleaving+generative training

.Input' for target Expected (.)utpu.t Architecture Training Procedure
item ¢ for target item ;
| | : Causal autoregressive
GRs Py, a9, P1,a1,...,P; a; (target-aware)  Self-attention (HSTU) (streaming/single-pass)
GRU4Rec B0 b, b, RNNs (GRUs) Causal autoregressive
SASRec 03 =1y e ey el ’ Self-attention (Transformers) (multi-pass)
BERT4Rec (I)o, (I)l, c ey D;_q _ . . . 6
S3Rec (at inference time) D; Self-attention (Transformers)  Sequential multi-pass
DIN a; (target aware Pairwise attention
BST Py, P1,...,P; @: (lars ’ Self-attention (Transformers) Pointwise (generally
implicitly as part . ) . o
TWIN of DLRMs) Two-stage pairwise attention  streaming/single pass)

TransAct  (®o,a0),...,(Pi—1,0:-1), P; Self-attention (Transformers)

(d) Comparisons of DLRMs w/ sequential sub-modules,

traditional sequential approaches in academic settings, and Generative Recommenders (GRs).
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DLRMs + Generative Models => Generative Recommenders (GRs)

Enabling fully sequential large-scale models: Generative Recommenders

o target-aware autoregressive setting significantly improves performance!

Methods Offline NEs Online metrics
E-Task C-Task E-Task C-Task
DLRM (pre-GR production model) 4982 1842 +0% +0%
DLRM (DIN+DCN+MMOoE) 5053 7899 — =
Trad. sequential recommender setting 4851 7903 — —
Generative Recommender (GR) 4845 7645 +12.4% +4.4%

Offline & Online Metric comparisons in ranking setting, with
a) DLRMs (w/ target-aware sequential sub-modules), b) traditional Sequential Recommender
settings (e.g., GRU4Rec, SASRec), and c) Generative Recommenders (GRs).
E-task is the main “engagement” task and C-task is the main “consumption” task.

Image credit (slide 13-16): Zhai, Liao, Liu, Wang, Li, et al. Actions Speak Louder than Words:
Trillion-Parameter Sequential Transducers for Generative Recommendations. ICML’24.
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lll. New Algorithms: Accelerating Training
& Inference by 10x-1000x for Generative
Recommenders




Training - HSTU: Better Quality & 15x Faster vs Transformers

HSTU: Hierarchical Sequential Transduction Units

* Pointwise aggregated (normalized) attention U(X), V(X),Q(X), K(X) = Split(éy (f(X)))

A(X)V(X) = o (Q(X)K(X)T + rabp’t) V(X)
Y(X) = f2 (Norm (A(X)V (X)) © U(X))

* Fusing self-attention and MLPs via element-
wise gating to reduce compute;

 Grouped GEMM kernel extending memory-

efficient attention (Rabe & Staats, 2021) and / Yo = B \
FA (Dao et al., 2022) to leverage sparsity; Norm(AX)V(X)) O U(X)
A
» Stochastic Length (SL) further algorithmically A= akerab™ | [ 000
Increases sparsity, reducing complexity to  — X
O(Nead) for « € (1,2] . /u.a K\; 0:(f10¥) \

Preprocessing
A
Sequentialized Unified Features
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Training - HSTU: Better Quality & 15x Faster vs Transformers

HSTU significantly outperforms Transformers In various settings...

« HSTU outperforms Transformers and various baselines on
synthetic, public datasets, and industrial-scale Generative
Recommender settings ...

Method HR@10 HR@50 HR @200 NDCG @10 NDCG @200
SASRec (2023) .2853 5474 7528 1603 2498
BERT4Rec 2843 (-0.4%) - _ 1537 (-4.1%) -

M. ORU4Rec 2811 (-1.5%) - _ 1648 (+2.8%)  —
HSTU 3097 (+8.6%) 5754 (+5.1%) 7716 (+2.5%)  .1720 (+7.3%)  .2606 (+4.3%)
HSTU-large 3294 (+15.5%) .5935 (+8.4%)  .7839 (+4.1%)  .1893 (+18.1%) .2771 (+10.9%)
SASRec (2023)  .2906 5499 7655 1621 2521
BERT4Rec 2816 (-3.4%) - _ 1703 (+5.1%) -

MLoom ORU4Rec 2813 (-32%) - _ 1730 (+6.7%) -
HSTU 3252 (+11.9%)  .5885 (+7.0%)  .7943 (+3.8%)  .1878 (+15.9%) .2774 (+10.0%)
HSTU-large 3567 (+22.8%) .6149 (+11.8%) .8076 (+5.5%)  .2106 (+30.0%) .2971 (+17.9%)
SASRec (2023)  .0292 0729 1400 0156 0350

Books  HSTU 0404 (+38.4%) 0943 (+29.5%) .1710 (+22.1%) .0219 (+40.6%) .0450 (+28.6%)

HSTU-large 0469 (+60.6%) .1066 (+46.2%) .1876 (+33.9%) .0257 (+65.8%) .0508 (+45.1%)

Table 12. Evaluations of methods on public datasets in traditional sequential recommender settings (multi-pass, full-shuffle).
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Architecture HR@10 HR@50
Transformers .0442 2025
HSTU (-rab?*, Softmax) .0617 2496
HSTU (-rab”*) .0893 3170

Table 2. Synthetic data in one-pass streaming settings.

Table 5. Evaluation of HSTU, ablated HSTU, and Transformers
on industrial-scale datasets in one-pass streaming settings.

Retrieval Ranking (NE)

Architecture log pplx. E-Task C-Task
Transformers 4.069 NaN NaN
HSTU (-rab?’*, Softmax) 4.024 5067 7931
HSTU (-rab??) 4.021 4980 7860
Transformer++ 4.015 4945 7822
HSTU (original rab) 4.029 4941 1817
HSTU 3.978 4937 7805




Training - HSTU: Better Quality & 15x Faster vs Transformers

... and achieves 15x Training Speedup on 8K sequences!

« HSTU outperforms Transformers and various baselines on
synthetic, public datasets, and industrial-scale Generative

Recommender settings ...

* ... while being 15x faster vs FlashAttention2 (SotA

|mplementat|on as of 05/2024) on 8k sequences during training,

due to HSTU desi

1.6
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%

1.9

2.0
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gn + SL-induced sparsity.

4.0x

3.6x

3.7x

6.9x

2.7x

2.5x

2.9x

6.3x

1.8x

1.6x

2.2X

5.9x

1.7X

1.4x

2.1x

5.3x

1024

2048

4096

Sequence length

(a) Training Speedup.

8192

20

Latency (ms)

125.00

100.00

75.00

50.00

25.00

0.00

Max Sequence Lengths
Alpha (@) 054 2048 4096 8,192
1.6 71.5% 76.1% 80.5% 84.4%
1.7 56.1% 63.6% 69.8% 75.6%
1.8 40.2% 453% 54.1% 66.4%
1.9 172% 21.0% 36.3% 64.1%
2.0 3.1% 6.6% 29.1% 64.1%

Table 3. Impact of Stochastic Length (SL) on sequence sparsity.

B HSTU B Transformers

1024 2048 4096

Sequence Length

(b) Inference Speedup.

121.3

8192



Inference - M-FALCON: 900x Speedup vs SotA DLRMs

Microbatched-Fast Attention Leveraging Cachable OperatioNs

EPISODE X: A NEW FRONTIER IN SPEED

IN A PERIOD OF TECHNOLOGICAL
REVOLUTION, SCIENTISTS HAVE
DISCOVERED A WAY TO ACHIEVE A 1000X
INFERENCE SPEEDUP FOR INDUSTRIAL-
SCALE RECSYS.

AMIDST THE VAST DIGITAL COSMOS, THE
POWERFUL M-FALCON STHARSHIP
ALGORITHM EMERGES AS THE BEACON OF
HOPE, PROMISING TO AUGMENT DECISION
MAKING PROCESSES ON ONLINE CONTENT
AND E-COMMERCE PLATFORMS THROUGH
GENERATIVE RECOMMENDERS...
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Inference - M-FALCON: 900x Speedup vs SotA DLRMs

Batched Target-Aware Inference + Microbatching + KV Caching

Batched predictions

M-FALCON leverages three key insights: @0 2pm-1)

Prediction Layer

 Batched inference enables compute
sharing, and can be efficiently applied to

target-aware autoregressive settings; Self-Attention Block(s)
* Microbatching scales batched inference |

to 10K+ candidates; pmbedding Layers
» Encoder-level caching eliminates Token Sequence

redundant ops Within & @CroSS rEOUESTS. .. oo ettt et see e innnnn e annn e e eneeeannnns

All m Ranking P' -1 _
Candidates
Microbatches

in M-FALCON Microbatch 0 Mlcrobatch 1 Microbatch m/b -1

(b) GR’s ranking model inference utilizing the M-FALCON algorithm.
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Inference - M-FALCON: 900x Speedup vs SotA DLRMs

Batched Target-Aware Inference + Microbatching + KV Caching

® GR(101x FLOPs) * GR (285x FLOPs) == DLRM (1x FLOPs)

1,250,000 1.93x
C 173 .-
M-FALCON leverages three key insights: 1,000,000 Y LS
1.34x__+7 1.31x..-
] 750,000 e RTTE

* Batched inference enables compute & : B A X

sharing, and can be efficiently applied to O T e

target-aware autoregressive settings; 250,000 : ________ *°0.34x

] - . 0 0.18x

 Microbatching scales batched inference 32 64 128 256 512 1024

to 10K+ Candidates; Candidates scored in M-FALCON (m)

B single microbatch W multiple microbatches (microbatch size=1024)

* EnCOder'IeVEI CaChing el | m | nates multiple microbatches (microbatch size=1024) + caching

2.0

redundant ops within & across requests. - . 1.99
S 1.68 '
These combined enables serving a 285x E 136
more Complex GR model at 3x QPS! o "9 WT0.99 : 1.01
E 05 0.80
E 0.0
1024 2048 4096 8192 16384

m Metq AI » Candidates scored in M-FALCON (m)



IV. Scaling Law for Recommendation Systems,
In Industrial-scale Production Settings




Compute growth of RecSys have lagged behind other fields...

& historically, DLRMs don’t scale well with compute

 Many Deep Learning Models, esp. LLMs, benefit from scaling law, where
losses etc. scale as a power-law of compute.

* Nevertheless, DLRMs generally scale with data but less well with compute...

7 LLaMa-2
10000 + GPT-3 o
6 O
AlphaZero
D 7 @)
7+ S
o 100 +
1 4 5 DLRM-22
s o BERT DLRM-21 '
B ¢ x
— 3. 5 g DLRM-20
g’ VGG ResNet
L = (Cmin/2.3+108)70:050 £ o ¢
2 : . . l = AlexNet
10~° 107 10~ 103 107! 101 0.01 Te
Compute | | | | | | |
PF-days, non-embedding 2012 2014 2016 2018 2020 2022 2024

Year

Compute Usage Trends for major Deep Learning Models
and representative DLRMs, before GRs (this work).

Scaling Law for LLMSs.
Image credit: Kaplan et al. Scaling Laws for Neural

00 Metq Al Language Models. 2020 24



Scaling Law with Generative Recommenders, up to LLM scale

GRs demonstrate scaling law in industrial-scale RecSys for the first time!

e ... across all major metrics, up to GPT-3 175b/LLaMa-2 70b scale!

€ Traditional DLRMs * Generative Recommenders (GRs)
= | =.15+.0195InC

¢ Traditional DLRMs * Generative Recommenders (GRs)

040 = | = 549 + -5 3E-03|In C
- 0.51
o e
S )
q) | -
2 )
©
0 § 0.49
I
< 0.30 =
Lﬁ Tg 0.48
LLl
| | | | | 047 I | |
0.25 ' ! ! ! 1000 10000 100000 1000000

1000 5000 10000 50000 100000

Training PetaFLOPs per day Training PetaFLOPs per day

Scalability comparison of DLRMs vs Generative Recommenders (GRs). left: HR@100 (retrieval), right: Normalized
Entropy (ranking). +0.005 in HR and -0.001 in NE represent significant improvements.
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Scaling Law with Generative Recommenders, up to LLM scale

GRs demonstrate scaling law in industrial-scale RecSys for the first time!

* This enables double-digit topline gains in production settings...

* ... While using less inference resources!

O\ Meta Al

Table 6. Offline/Online Comparison of Retrieval Models.

Methods Offline HR@K Online metrics
K=100 K=500 E-Task C-Task
DLRM 29.0%  55.5% +0% +0%
DLRM (abl. features) 28.3%  54.3% -
GR (content-based) 11.6%  18.8% —
GR (interactions only) 35.6% 61.7% —
GR (new source) 36.9% 62.4% +6.2% +5.0%

GR (replace source)

+5.1% +1.9%

Table 7. Offline/Online Comparison of Ranking Models.

Methods Offline NEs Online metrics
E-Task C-Task E-Task C-Task
DLRM 4982 7842 +0% +0%
DLRM (DIN+DCN) 5053 .7899 — —
DLRM (abl. features) 5053 7925 — —
GR (interactions only) 4851 .7903

GR 48435

7645 +124% +4.4%

26

LLaMa-2
10000 + GPT-3 o GR-24
° *
AlphaZero
% ¢ GR-23
T 100 x
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@) BERT DLRM-21 +*
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e *
f= VGG ResNet
£ o ©
()
= AlexNet
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Figure 1. Total compute used to train deep learning models over
the years. DLRM results are from (Mudigere et al., 2022); GRs are
deployed models from this work. DLRMs/GRs are continuously
trained in a streaming setting; we report compute used per year.



Thank You / Recap

 Generative Recommenders (GRs) reinterpret main RecSys tasks within a
generative framework, unifying heterogeneous feature spaces, while
addressing expressiveness constraints in traditional sequential settings.

 HSTU outperforms SotA baselines by 65.8% in NDCG, and offers a 15x
training speedup vs Transformers on 8k length sequences. M-FALCON
further enables a 900x speedup vs DLRMs at inference time.

« HSTU-based Generative Recommenders, with 1.5 trillion params, improve
online metrics by 12.4%+. We observe scaling law in industrial-scale
recommendation systems for the first time, up to GPT-3 175b/LLaMa-2 70b
compute scale, which represents a potential ChatGPT moment for RecSys.

For more information / references: Actions Speak Louder than Words: Trillion-Parameter
Sequential Transducers for Generative Recommendations. ICML’24. arXiv: 2402.17152,
github: facebookresearch/generative-recommenders. & We’re hiring! MetaCareers, etc.
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https://arxiv.org/abs/2402.17152
https://github.com/facebookresearch/generative-recommenders
https://www.metacareers.com/v2/jobs/917648072656133/

... & Implications beyond scale?

LLaMa-2

* “recommender systems ... Is the single largest 10000 + GPT:3 | ®GR24

software engine on the planet” — Jensen Huang, - T
NVIDIA, 02/22/2024 () ¢

* - when referring to models ~100x less complex vs
what we just presented

GR-23
X

DLRM-22
BERT DLRM-21 4

o *

DLRM-20
x

—

-

o
|

A
|
|

 What about implications beyond scale?

VGG ResNet
o o

Training PetaFLOP/s-days

* Deprecation of large number of features enables = oo falexne

privacy-friendly next-generation systems —
_ _ . ] . 2012 2014 2016 2018 2020 2022 2024
* Fully sequential settings better aligns incentives Year

of platforms (& the web!) with the users

For more information / references: Actions Speak Louder than Words: Trillion-Parameter
Sequential Transducers for Generative Recommendations. ICML’24. arXiv: 2402.17152,
github: facebookresearch/generative-recommenders. & We’re hiring! MetaCareers, etc.
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https://arxiv.org/abs/2402.17152
https://github.com/facebookresearch/generative-recommenders
https://www.metacareers.com/v2/jobs/917648072656133/
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