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Robust Nash Equilibrium can be computed efficiently via 
Game Regularization!

Motivation

Theorem: Computing RNE is PPAD-hard even 
for (s,a)-rectangular zero-sum matrix games.

A general and tractable equivalence:

• Robust policies can be found using 
regularization, sometimes efficiently.

Offline RL must be robust!
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Robust Markov Game

Regularized Game

Ωi,h(s, π) := σℛi,s,h( − πiπ⊤
−i)

Theorem: If  is decomposable, the equivalent 
RG is zero-sum so can be solved in poly time.
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Example Regularizers:

RGs use a Regularized Value:

1. Entropy:  Ωi,h(s, π) = αi ∑
ai∈𝒜i

πi(ai)log πi(ai)

2. Norm:     Ωi,h(s, π) = αi,s,h | |πi | |p | |π−i | |q
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Key to Tractability: Decomposability
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Robustness Regularization

…

• Regularizers provide robustness.

*Similar results hold for Transition Uncertainty

Example [Ball Uncertainty]:
ℛi,s,h = {R ∈ ℝA1×A2 ∣ | |R − R0 | |p ≤ αi,s,h}


