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Robust Nash Equilibrium can be computed efficiently via

Game Regularization!

Motivation

Regularized Games
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Offline RL must be robust!

Robust Markov Games

RGs use a Regularized Value:
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Example Regularizers:
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Equwalence of RMG and RG
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Theorem: Computing RNE is PPAD-hard even
for (s,a)-rectangular zero-sum matrix games.

( Key to Tractability: Decomposability
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RMG = model M° and uncertainty set ./
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Example [Ball Uncertainty]:
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Robust NE do well for all models in /A
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Characteristic function
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*Similar results hold for Transition Uncertamty

Theorem: If ¢ is decomposable, the equivalent
RG is zero-sum so can be solved in poly time.

Conclusions

A general and tractable equivalence:

Robustness == Regularization

* Robust policies can be found using
regularization, sometimes efficiently.

* Regularizers provide robustness.




