On the Implicit Bias of Adam

Matias D. Cattaneo Jason M. Klusowski Boris Shigida*

Princeton University

ICML 2024

^{*}bs1624@princeton.edu

Background: modified ODE for gradient descent

• GD is the Euler method solving an ODE:

$$(\hat{\boldsymbol{\theta}} = -\nabla E(\boldsymbol{\theta})) \xrightarrow{\text{discretization}} (\boldsymbol{\theta}^{(n+1)} = \boldsymbol{\theta}^{(n)} - h \nabla E(\boldsymbol{\theta}^{(n)}), \text{step size}$$

$$\text{gradient descent}$$

giving
$$O(h)$$
-closeness: $\|\boldsymbol{\theta}(nh) - \boldsymbol{\theta}^{(n)}\| = O(h)$

• There is an ODE that is closer to the iterations:

$$\dot{\tilde{\boldsymbol{\theta}}} = -\nabla E(\tilde{\boldsymbol{\theta}}) - \underbrace{\frac{h}{4}\nabla \|\nabla E(\tilde{\boldsymbol{\theta}})\|^2}_{\text{implicit regularization}} \xrightarrow{\text{discretization}} \boldsymbol{\theta}^{(n+1)} = \boldsymbol{\theta}^{(n)} - h\nabla E(\boldsymbol{\theta}^{(n)}),$$

giving
$$O(h^2)$$
-closeness: $\|\tilde{\boldsymbol{\theta}}(nh) - \boldsymbol{\theta}^{(n)}\| = O(h^2)$

 See, e.g.,
 D. Barrett and B. Dherin (2021). "Implicit Gradient Regularization". In: International Conference on Learning Representations

Background: O(h) approximation of Adam

• Full-batch Adam with fixed β, ρ, ε is close to perturbed sign-GD flow:

• C. Ma, L. Wu, and E. Weinan (2022). "A qualitative study of the dynamic behavior for adaptive gradient algorithms". In:

Mathematical and Scientific Machine Learning. PMLR, pp. 671–692

Our contribution: $O(h^2)$ approximation of Adam

• There is a correction term

$$\dot{\tilde{\boldsymbol{\theta}}}(t) = -\frac{\nabla E\big(\tilde{\boldsymbol{\theta}}(t)\big) + \operatorname{correction}\big(\tilde{\boldsymbol{\theta}}(t)\big)}{\sqrt{\big|\nabla E\big(\tilde{\boldsymbol{\theta}}(t)\big)\big|^2 + \varepsilon}},$$

giving $O(h^2)$ -closeness to Adam

• It is given by

$$\mathbf{correction}_j(\boldsymbol{\theta}) := \frac{h}{2} \bigg\{ \frac{1+\beta}{1-\beta} - \frac{1+\rho}{1-\rho} + \frac{1+\rho}{1-\rho} \cdot \frac{\varepsilon}{|\nabla_j E(\boldsymbol{\theta})|^2 + \varepsilon} \bigg\} \nabla_j \big\| \nabla E(\boldsymbol{\theta}) \big\|_{1,\varepsilon}$$

- The index j means "j-th component"
- The perturbed one-norm is $\|\mathbf{v}\|_{1,\varepsilon} = \sum_{i} \sqrt{v_i^2 + \varepsilon}$

Correction term in the typical case

• When ε is small (compared to gradient components),

correction(
$$\boldsymbol{\theta}$$
) $\approx \underbrace{\frac{h}{2} \left\{ \frac{1+\beta}{1-\beta} - \frac{1+\rho}{1-\rho} \right\} \nabla \|\nabla E(\boldsymbol{\theta})\|_{1,\varepsilon}}_{\text{implicit anti-regularization}}$

- The perturbed one-norm is $\| \pmb{v} \|_{1,\varepsilon} = \sum_i \sqrt{v_i^2 + \varepsilon}$
- Since $\rho > \beta$, the norm is *anti*-penalized

Interpretation

• Define for some radius r,

$$\ell_{\infty}$$
-sharpness $(r) := \max_{\|\boldsymbol{\delta}\|_{\infty} \le r} E(\boldsymbol{\theta} + \boldsymbol{\delta}) - E(\boldsymbol{\theta})$

• Linearize under "max":

$$\max_{\|\boldsymbol{\delta}\|_{\infty} \leq r} E(\boldsymbol{\theta} + \boldsymbol{\delta}) - E(\boldsymbol{\theta}) \approx \max_{\|\boldsymbol{\delta}\|_{\infty} \leq r} \nabla E(\boldsymbol{\theta})^{\mathsf{T}} \boldsymbol{\delta} = r \|\nabla E(\boldsymbol{\theta})\|_{1}$$

- Since for small ε , the perturbed one-norm is just the one-norm, Adam anti-penalizes approximate ℓ_{∞} -sharpness
- This biases the trajectory towards "higher curvature" regions

Empirical evidence: increasing ρ

Resnet-50 on CIFAR-10 trained with full-batch Adam, $\varepsilon = 10^{-8}$, $\beta = 0.99$

Empirical evidence: increasing β

Resnet-50 on CIFAR-10 trained with full-batch Adam, $\rho=0.999,\, \varepsilon=10^{-8}$

Other contributions

• Complete characterization of the full-batch bias:

- Full analysis and proof for the general mini-batch case
- Empirical verification for simple convolutional neural networks, ResNets, and Vision Transformers