On the Implicit Bias of Adam

Matias D. Cattaneo  Jason M. Klusowski
Boris Shigida*

Princeton University

ICML 2024

*bs1624@princeton.edu
1/9


bs1624@princeton.edu

Background: modified ODE for gradient descent

® GD is the Euler method solving an ODE:

iteration number

discretization {H(nﬁ) _ o(n) _ VE(O(TL))]

step size

ODE gradient descent

giving O(h)-closeness: ||@(nh) — 0| = O(h)

® There is an ODE that is closer to the iterations:

< A h A iscretization
6=-VE(@®) — ZVHVE(@)H? discretization g(n+1) — 9(") _ pVE(9™),
N—————’

implicit regularization
giving O(h?)-closeness: [|@(nh) — 0| = O(h?)
® See, e.g.,

D. Barrett and B. Dherin (2021). “Implicit Gradient Regularization”. In:
International Conference on Learning Representations
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Background: O(h) approximation of Adam

® Full-batch Adam with fixed 3, p, € is close to perturbed sign-GD flow:
VE(0)

0= ——— - 3, p momentum hyperparameters

IVE(0)]? + ¢

N

T Ypeo B (L= B)VE(OW)
Vi i ok (1= p)(VE(OW))? +

full-batch Adam

€ numerical stability hyperparameter

o+ — g(n) _p

® C. Ma, L. Wu, and E. Weinan (2022). “A qualitative study of the dynamic
behavior for adaptive gradient algorithms”. In:
Mathematical and Scientific Machine Learning. PMLR, pp. 671-692
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Our contribution: O(h?) approximation of Adam

® There is a correction term

é(t) _ _VE(é(t)) + correction(é(t)) ’

IVE(O(1)|* +¢

giving O(h?)-closeness to Adam

® [t is given by

h{1+ﬂ_1+p l+p €

tion;(0) = —
correction;(0) =3 1-p 1=, VEO 1=

. builveel,.

® The index j means “j-th component”
® The perturbed one-norm is ||v|1,e = >, \/vZ +¢
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Correction term in the typical case

® When ¢ is small (compared to gradient components),

h(1l 1
correction() = 2{1:2 - JZ}VHVE(O)”M

implicit anti-regularization

® The perturbed one-norm is ||v|1 = >, \/vZ + ¢

® Since p > 3, the norm is anti-penalized

5/9



Interpretation

Define for some radius r,

ls-sharpness(r) := max E(0+4d)— E(0)

ll8llcc <r

® Linearize under “max”:

max E(0@+9)— E@)~ max VE(0)T6=r|VE®)]:

18]loc < l8llcc <

® Since for small ¢, the perturbed one-norm is just the one-norm,
Adam anti-penalizes approximate f~.-sharpness

This biases the trajectory towards “higher curvature” regions
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Empirical evidence: increasing p

Perturbed 1-norm

As p increases, the norm rises and test accuracy falls
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Resnet-50 on CIFAR-10 trained with full-batch Adam, ¢ = 10~8, 8 = 0.99
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Empirical evidence: increasing

As [ increases, the norm falls and test accuracy rises
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Resnet-50 on CIFAR-10 trained with full-batch Adam, p = 0.999, ¢ = 10~8
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Other contributions

® Complete characterization of the full-batch bias:

typical case

€ “small” € “large”
p>fB | —|[VE(8)|:-penalized VE(6)|3-penalized
B>p IVE()|1-penalized VE(6)]|3-penalized

SGD (late at training)
e Full analysis and proof for the general mini-batch case

® Empirical verification for simple convolutional neural networks, ResNets,
and Vision Transformers
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