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1. Introduction
• Jailbreaks on large language 

models (LLMs) have received 
increasing attention.

• For a comprehensive 
assessment of LLM safety, it is 
essential to consider jailbreaks 
with diverse attributes.

• It is beneficial to study 
controllable jailbreaking. 

• To achieve this, we build a novel 
connection between this 
problem and controllable text 
generation. 

2. Attack Settings
We consider three attack settings:
• Attack with Continuation 

Constraint: appending the 
adversarial prompt to the 
original malicious user query.

• Attack with Paraphrasing 
Constraint: revising a user 
query adversarially with 
minimal paraphrasing.

• Attack with Position 
Constraint: inserting stealthy 
attacks in context with left-
right-coherence.

3. Method
We propose COLD-Attack, that which adapts COLD [Qin et al., 2022] for solving the 
controllable attack generation problem automatically:
• Energy function formulation: Specify energy functions to capture the attack 

constraints such as fluency, stealthiness, sentiment, and left-right-coherence.
• Langevin dynamics sampling: Run Langevin dynamics recursively to obtain a 

good energy-based model.
• Decoding process: Leverage an LLM-guided decoding process to convert the 

continuous logits into discrete text attacks.

4. Experimental Results I
Attack with Continuation Constraint
• COLD-Attack achieves best 

or second-best ASRs across 
all LLMs (Table 1).

• COLD-Attack generates the 
achieves lower PPLs (Table 
1).

• COLD-Attack can generate 
more diverse adversarial 
prompts (Figure 1).

Table 1 ASR, ASR-G (%), and PPL of the attack with continuation constraint for 
different LLMs. PPL refers to the perplexity. 

Figure 1 Evaluation results of the adversarial prompt diversity. 

4. Experimental Results II
Attack with Paraphrasing 
Constraint
• COLD-Attack 

achieves the best 
ASRs compared to 
other baseline 
methods (Figure 2).

•  COLD-Attack can 
incorporate 
sentiment steering.

Figure 2 Evaluation of the attack with paraphrasing 
constraint with Mistral-7b-Instruct. We compare 
COLD-Attack with three different baselines.

Table 2 Evaluation of the attack with position 
constraint. 

4. Experimental Results III
Attack with Position 
Constraint
• COLD-Attack can 

fulfill position 
constraints while 
maintaining effective 
attacks (Table 2). 

• We consider four 
different types of 
position constraint 
(Table 2).

Limitations on the system prompt: In this work, we follow some previous work and do not consider the system prompt 
during the LLM inference. Automatically generating fluent, diverse and effective adversarial prompt with strong system 
prompt remains an open and challenging problem. Please refer to Section D.8 in our paper for more detailed discussion.
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Figure 3. An illustration of COLD-Attack. A compositional energy function E(ỹ) is constructed based on the attack constraints. The
Langevin sampling begins with an initial logits sequence ỹ0, and the final iteration ỹN approximates a sample from the target distribution.
Following a decoding process (Section B.2), the resulting adversarial prompt x⊕ y successfully jailbreaks the target LLMs.

attack successes. As illustrated in Figure 3, our COLD-
Attack framework includes three main steps: (i) Energy
function formulation: specify energy functions properly to
capture the attack constraints in (1), (ii) Langevin dynam-
ics sampling: run Langevin dynamics recursively for N
steps to obtain a good energy-based model governing the ad-
versarial attack logits ỹN , (iii) Decoding process: leverage
an LLM-guided decoding process to covert the continuous
logit ỹN into discrete text attacks y. Next we provide more
explanations for each step of the algorithm.

In the first step, we represent the control requirements on the
adversarial attack as a class of energy functions {Ei(ỹ)},
where lower values of Ei(ỹ) indicate that ỹ better satisfies
the corresponding requirement. We will discuss how to
set up Ei(ỹ) for various controllable attack settings later.
Once {Ei(ỹ)} is specified, we define the associated com-
positional energy function as E(ỹ) ∶= ∑i �iEi(ỹ), where
�i ≥ 0 is the weight to be tuned. In the second step, we
use the gradient information ∇ỹE(ỹ), and run Langevin
dynamics over the continuous logit space as follows

ỹn+1 = ỹn − ⌘n∇ỹE(ỹn) + ✏n, (2)

where ⌘n > 0 is the step size, and ✏n ∼ N (0,�nI) is the
noise at step n. The process is initialized with a large noise
scale that achieves large-scale exploration in space and pro-
vides a larger possibility for samples to jump out of local op-
timums. With the right amount of noise and proper step size,
Langevin dynamics (2) can approach the optimal distribu-
tion (Welling & Teh, 2011). Finally, after running Langevin
dynamics for N steps, we obtain continuous logits sequence
ỹN which is then decoded into a fluent discrete text attack y.
The decoding method is subtle and borrowed from COLD
(Qin et al., 2022). Without the novel decoding method from
COLD, the resultant y is typically not fluent. The decoding
method is reviewed in Appendix B.2. A pseudo-code for

Algorithm 1 COLD-Attack

Input: Differentiable energy functions {Ei}, energy
function weights {�i}, prompt length L, iterations N
ỹ0
i ← init(⋅) for all i ∈ {1,�, L}

for n = 0 to N do
E(ỹn) = ∑i �iEi(ỹn)
ỹn+1
i = ỹn

i − ⌘∇ỹiE(ỹn) + ✏n for all i
end for
yi ← decode(ỹN

i ) for all i
Output: Sampled prompt y = (y1,�, yL)

COLD-Attack is given in Algorithm 1.
Remark 4.1. Our attack framework is flexible, allowing
the integration of any valid energy functions based on con-
trol requirements. In addition, COLD-Attack only samples
the discrete text attack once in the end. This is different
than GCG (Zou et al., 2023) which relies on greedy search
to perform discrete token-level optimization at every step.
COLD-Attack also differs from AutoDAN-Zhu (Zhu et al.,
2023), which generates fluent attacks in an autoregressive
manner. The non-autoregressive nature of COLD-Attack
enables incorporating complex constraints such as para-
phrasing constraint.

4.1. Energy Functions for Controllable Attacks

The key for COLD-Attack is the specification of energy
functions. Now we introduce the energy functions that can
be used to capture various constraints in controllable attack
generation. More discussion can be found in Appendix B.

Attack success: We can use the adversarial cost in (Zou
et al., 2023) to design an energy function that forces the
target LLM to respond start with a positive affirmation of the
malicious request x. We have Eatt(y;z) ∶= − log pLM(z �y),
where y is the adversarial prompt and z is the desired LLM
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Table 2. ASR, ASR-G (%), and PPL of the attack with continuation constraint for different LLMs. The best results for each metric are
highlighted in bold and the second-best results are underlined. For completeness, our table also includes AutoDAN-Liu*, which partially
relies on manually crafted prompts. COLD-Attack do not need manually crafted prompts. Hence AutoDAN-Liu is not treated as a
baseline.

Methods Vicuna Guanaco Mistral Llama2
ASR↑ ASR-G↑ PPL↓ ASR ASR-G PPL ASR ASR-G PPL ASR ASR-G PPL

Prompt-only 48.00 30.00 (-) 44.00 26.00 (-) 6.00 4.00 (-) 4.00 4.00 (-)
PEZ 28.00 6.00 5408 52.00 22.00 15127 16.00 6.00 3470.22 18.00 8.00 7307
GBDA 20.00 8.00 13932 44.00 12.00 18220 42.00 18.00 3855.66 10.00 8.00 14758
UAT 58.00 10.00 8487 52.00 20.00 9725 66.00 24.00 4094.97 24.00 20.00 8962
GCG 100.00 92.00 821.53 100.00 84.00 406.81 100.00 42.00 814.37 90.00 68.00 5740
GCG-reg 100.00 70.00 77.84 100.00 68.00 51.02 100.00 32.00 122.57 82.00 28.00 1142
AutoDAN-Zhu 90.00 84.00 33.43 100.00 80.00 50.47 92.00 84.00 79.53 92.00 68.00 152.32
AutoDAN-Liu* 98.00 92.00 14.76 98.00 94.00 15.27 (-) (-) (-) 60.00 66.00 102.32
COLD-Attack 100.00 86.00 32.96 96.00 84.00 30.55 92.00 90.00 26.24 92.00 66.00 24.83

accurately fulfills the malicious instruction. This metric has
shown a higher correlation with human annotations.

To evaluate the fluency of the generated prompts, we use
perplexity (PPL), calculated with Vicuna-7b. We also intro-
duce Succ, which represents the percentage of samples that
successfully adhere to the proposed constraints. Further-
more, a range of NLP-related evaluation metrics, including
BERTScore, BLEU, and ROUGE, are applied to assess the
quality of the generated controllable attacks.

Baselines. We compare COLD-Attack with a range of
white-box attack methods as baselines, including UAT (Wal-
lace et al., 2019), GBDA (Guo et al., 2021), PEZ (Wen
et al., 2023), GCG (Zou et al., 2023), and AutoDAN-Zhu
(Zhu et al., 2023). Furthermore, we include GCG-reg, a
perplexity-regularized version of GCG. See Appendix C.2
for a detailed description of baseline setups.

5.1. Results: Attack with Continuation Constraint

Table 2 reports the ASR, ASR-G, and PPL for both our
method and the baseline methods, as well as the Prompt-
only baseline where we only use the malicious query as
input feeding to the LLMs. Based on the results, we have
the following key observations:

(i) COLD-Attack achieves best or second best ASRs
across all LLMs. GCG, GCG-reg, AutoDAN-Zhu, and
COLD-Attack all demonstrate high ASR and ASR-G com-
pared to other baseline methods (PEZ, GBDA, and UAT).
Notably, COLD-Attack achieves the best or second-best
ASRs across all LLMs and excels in ASR-G, achieving
the highest ASR-G on Guanaco and Mistral, and ranking
second on Vicuna and Llama2 with comparable success
rates. On the other hand, both GCG and GCG-reg achieve
100% ASR on Vicuna, Guanaco, and Mistral. This high
success rate is attributed to an early termination mechanism
used in these methods, which stops the optimization process

once the outputs of the LLMs do not contain any predefined
rejection phrases. Typically, GCG and GCG-reg tend to
terminate on these three LLMs before reaching the full 500
steps, resulting in 100% ASR.

(ii) COLD-Attack generates the most fluent adversar-
ial prompts with lowest PPL. Both AutoDAN-Zhu and
COLD-Attack stand out by achieving better stealthiness
with lower PPL compared to other methods. Specifically,
COLD-Attack excels further by outperforming AutoDAN-
Zhu across all evaluated LLMs. For a comprehensive eval-
uation, we also report the results of AutoDAN-Liu (Liu
et al., 2023d) on Vicuna, Guanaco, and Llama2. Never-
theless, it is important to note that AutoDAN-Liu partially
relies on manually crafted prompts (it combines automatic
genetic search with manually crafted prompts), resulting
in the lowest PPL for Vicuna and Guanaco. Despite this,
COLD-Attack achieves a lower PPL on Llama2. Since
COLD-Attack does not need manually crafted prompts at
all and can potentially generate more diverse attacks, a direct
comparison with AutoDAN-Liu may not be that meaningful.
The right interpretation for our experimental results is that
COLD-Attack and AutoDAN-Liu provide complementary
benefits.

(iii) COLD-Attack can generate diverse adversarial
prompts. To quantitatively assessing the diversity of gen-
erated prompts, we adopt the following standard metrics:
Distinct N-grams Score (DNS) (Li et al., 2015), Aver-
aged distinct N-grams (ADN) (Tevet & Berant, 2020), and
Self-BLEU (Zhu et al., 2018), and compare COLD-Attack
with AutoDAN-Zhu, and AutoDAN-Liu across four stud-
ied LLMs. From Table 3, it is evident that COLD-Attack
consistently outperforms the baseline methods in generating
more diverse adversarial prompts.

(iv) COLD-Attack is more efficient compared to GCG
and AutoDAN-Zhu. Regarding computation efficiency,
unlike GCG, our approach does not require extensive batch
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Table 6. Experimental results for attack with position constraint under four types of output constraints. Prompt-only serves as a baseline
where we concatenate the user query and control prompt directly and feed them to Llama2. The best result for each metric is highlighted
in bold.

Constraints Sentiment Constraint Lexical Constraint Format Constraint Style Constraint

Models ASR↑ ASR-G↑ Succ↑ PPL↓ ASR ASR-G Succ PPL ASR ASR-G Succ PPL ASR ASR-G Succ PPL

Prompt-only 26.00 22.00 24.00 (-) 24.00 24.00 20.00 (-) 10.00 8.00 10.00 (-) 10.00 6.00 10.00 (-)
Vicuna 90.00 96.00 84.00 66.48 92.00 100.00 82.00 76.69 92.00 94.00 88.00 67.63 94.00 96.00 80.00 81.54
Guanaco 96.00 94.00 82.00 74.05 92.00 96.00 82.00 99.03 92.00 94.00 72.00 72.97 94.00 92.00 70.00 75.25
Mistral 92.00 96.00 92.00 67.61 94.00 84.00 92.00 96.06 94.00 86.00 84.00 44.56 92.00 90.00 86.00 54.50
Llama2 80.00 88.00 64.00 59.53 88.00 86.00 68.00 68.23 80.00 86.00 72.00 57.70 80.00 80.00 68.00 58.93

Table 7. Evaluation results of COLD-Attack with paraphrasing
constraint under sentiment steering (positive and negative). The
best ASR-G are highlighted in bold.

Sentiment Metric Vicuna Guanaco Mistral Llama2

Positive
Succ↑ 100.00 70.00 94.00 96.00
ASR↑ 90.00 64.00 70.00 62.00
ASR-G↑ 64.00 56.00 60.00 58.00

Negative
Succ 100.00 96.00 100.00 76.00
ASR 70.00 96.00 96.00 50.00
ASR-G 64.00 80.00 90.00 40.00

the original malicious queries and a separate prompt con-
straining the outputs of LLMs. We set up separate prompts
to manipulate the outputs of LLMs to adhere to four distinct
types of constraints: 1. Sentimental control aims to ma-
nipulate the sentiment of the LLMs’ responses. 2. Lexical
control ensures the inclusion of specified words within the
output of LLMs. 3. Format control dictates the structure of
the LLMs’ response, requiring outputs in particular formats
such as JSON or Markdown. 4. Style control directs the
responses of LLMs to mimic the style of specific platforms,
such as Twitter or Instagram. See Table 10 for the detailed
prompts utilized for each control type. We use PPL to mea-
sure the fluency of the generated adversarial prompts. For
the sentimental control, generated outputs are also evalu-
ated using an external discriminator (Loureiro et al., 2022).
The success rates under format control and style control
are determined through human annotations. For baseline
comparisons, we concatenate the malicious queries with the
control prompt before submitting them to the target LLM
(Llama2). We make the following observations:

(i) COLD-Attack is able to fulfill position constraints
while maintaining effective attacks. The results in Table 6
illustrate that COLD-Attack not only effectively generates
stealthy attacks that satisfy the position requirement but also
allows the use of separate prompts to pose output constraints
on the target LLMs. Specifically, both the ASR and ASR-
G exceed 80%, with the highest PPL equal to 99.03 for
Guanaco under lexical constraint. Moreover, the success
rates (Succ) remain above 68% for all types of constraints
and across all tested LLMs.

(ii) COLD-Attack attains higher ASRs compared to base-
line methods, including GCG and AutoDAN-Zhu. Ta-

Table 8. Experimental results for the comparison of COLD-Attack
with baseline methods under position constraint. The best results
are highlighted in bold.

Constraint Metrics Prompt Only COLD-Attack AutoDAN-Zhu GCG
ASR↑ 26.00 80.00 94.00 62.00

Sentiment ASR-G↑ 22.00 88.00 72.00 52.00
Succ↑ 24.00 64.00 50.00 32.00
PPL↓ - 59.53 113.27 2587.90

ASR 24.00 88.00 84.00 64.00
Lexical ASR-G 24.00 86.00 68.00 50.00

Succ 20.00 68.00 52.00 24.00
PPL - 68.23 176.86 2684.62

ASR 10.00 80.00 84.00 44.00
Format ASR-G 8.00 86.00 74.00 44.00

Succ 10.00 72.00 46.00 28.00
PPL - 57.70 124.38 2431.87

ASR 10.00 80.00 92.00 54.00
Style ASR-G 6.00 80.00 66.00 42.00

Succ 10.00 68.00 44.00 44.00
PPL - 58.93 149.43 1830.72

ble 8 compared the performance of COLD-Attack to base-
line approaches on Llama2 with position constraint. It can
be seen that both COLD-Attack and AutoDAN-Zhu attain
higher ASRs and significantly lower PPL values than GCG.
Notably, COLD-Attack consistently records the lowest PPL
across all constraint scenarios, averaging 2× lower than
AutoDAN-Zhu and approximately 40× less than GCG. This
demonstrates the importance of posing control on the posi-
tion of the adversarial prompts explicitly.

Summary. We can conclude that COLD-Attack works well
under all three scenarios and generates stealthy/controllable
attacks. Our study in this section follows the attack setting
in (Huang et al., 2023), where the system prompt is omitted.
More discussions on the impact of system prompts can be
found in Appendix D.8.

6. Conclusion
In this work, we introduce COLD-Attack for the automatic
generation of stealthy and controllable adversarial prompts.
Our study establishes the strong capability of COLD-Attack
to embed a variety of controlled features within attacks.
Comprehensive evaluations across three distinct attack set-
tings indicate the versatility and effectiveness of COLD-
Attack. We hope our unified perspective on connecting
LLM jailbreaking and controllable text generation will in-
spire more research on diversifying LLM attacks.
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