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•Principal’s strategy: decouple the problem and learn first the optimal in-
centives with a binary search and then run any bandit subroutine.

•The cost to learn the optimal incentives is very small as compared to any
subroutine regret.

•Extension to the linear contextual bandit setting.

Take home message

•Setting: Two players: the principal and the agent with a bandit instance
(νa)a∈A for the principal and known rewards s = (s1, . . . , sK) ∈ RK

+ for
the agent. Set of actions A = [K].

•Game: over T ∈ N⋆ rounds. At any step t ∈ [T ], the principal proposes
a transfer π(t) to the agent associated with an action at ∈ A. During
the round, agent picks action At ∈ A and their utilities are

XAt
(t) − 1at(At)π(t) for the principal, where XAt

(t) ∼ νAt
,

sAt
+ 1at(At)π(t) for the agent .

•Agent’s behaviour: We assume that the agent is myopic and always
maximises his instantaneous utility, hence the choice of At

At ∈ argmaxa∈A{sa + 1at(a)π(t)} .

•Principal’s objective: Maximize his utility and solve

maximize
∫

xνa(dx) − π over π ∈ R+, a ∈ [K]
such that a ∈ argmaxa′∈[K] {sa′ + 1a(a′)π} ,

(1)

which is equivalent to minimizing her regret (where µ⋆ solution of (1))

R(T ) = T µ⋆ −
T∑

t=1
E[XAt

(t) − 1at
(At)π(t)] .

Setting and objectives

- From the principal’s side, how can we define the optimal incentives to
guide the agent’s behaviour?

-How can we learn the optimal incentives as well as playing on the bandit
instance?

If minimal incentives π⋆
a = maxa′∈[K] sa′ − sa to enforce At = a are known,

the problem is reduced to a shifted bandit instance, hence the idea of IPA:
- First learn the optimal incentives with a precision 1/T through a binary
search like procedure: O(K log2(T )) rounds.

-Then run any bandit subroutine on the shifted bandit instance.
→ Separate the learning of the optimal incentives from the ban-
dit game to get the optimal regret bound.

Questions:

Decouple the problem between a first binary search phase to learn the
optimal incentives and the run of a bandit subroutine.
•Binary search steps: We show that a binary search procedure can be

run in K⌈log2 T ⌉ rounds such that we obtain π̂a at the end and

|π̂a − π⋆
a| ≤ 2/T for any a ∈ A .

as well π̂a > π⋆
a, and therefore, for any step t ≥ K⌈log2 T ⌉

if (at, π(t)) = (a, π̂a), then At = a .

→ after the binary search, the principal can guide the agent’s action with
an extra cost of at most 2/T .

•Bandit subroutine: Then, ALG (which can be UCB or ETC for instance)
is run the bandit instance with rewards (Xa(1) − π̂a)a∈A ∼ ρ.

Principal’s strategy

Theorem. IPA run over T rounds has an overall regret R(T ) such
that

R(T ) ≤ O(
√

KT log(T )) ,

with Alg = UCB as the principal’s subroutine on the shifted multi-armed
bandit after the binary search.

Regret bound for the principal-agent game

•Set of possible actions At ⊆ B(0, 1), where B(0, 1) stands for the unit
closed ball in Rd, family of zero-mean distributions (ν̃a)a∈B(0,1) such that

for any a ∈ B(0, 1), t ∈ [T ], ηa(t) ∼ ν̃a .

•Principal’s reward: family {(Xa(t))a∈B(0,1) : t ∈ [T ]} of independent ran-
dom variables such that for any t ∈ [T ], a ∈ B(0, 1),

Xa(t) := ⟨θ⋆, a⟩ + ηa(t) ,

and agent’s reward: (⟨s⋆, a⟩)a∈B(0,1). At each step t, the principal offers
a transfer κ(t, ·) and aims to design κ(t, ·) to find

maximize ⟨θ⋆, a⟩ − κ(t, a) over κ(t, ·) : At → R+,

such that a ∈ argmaxa′∈At
{⟨s⋆, a′⟩ + κ(t, a′)} .

•Differences with the multi-armed case: Although the problem
seems very similar, the binary search cannot be run as before due to the
set At which changes over the steps, hence our definition of the event

Et :=
{

max
a1

t ̸=a2
t∈At

diam
(

St,
a1

t − a2
t

∥a1
t − a2

t∥

)
<

1
T

}
,

to decide wheter Contextual IPA runs a multidimensional binary search
or a contextual bandit subroutine.

Extension to the contextual case

Theorem. If Contextual IPA is run with the corruption robust sub-
routine CW-OFUL (He et al., 2022), the regret of Contextual IPA is
bounded as

R(T ) ≤ O(d log(dT ) + d
√

T log(T )) .

Main technical difficulty: the multidimensional binary search that
we achieve with the bound from Lobel et al., 2018. Without any extra cost
nor assumption on At, we converge towards the optimum!

Volume of S0 cut along a direction w1 while the diameter is not
reduced along v1 nor v2..

Recovering a regret bound

Cumulative regret of IPA on a 5 arms, 1-subgaussian rewards bandit.
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