

INCENTIVIZED LEARNING IN PRINCIPAL - AGENT BANDIT GAMES

A. Scheid, D. Tiapkin, E. Boursier, A. Capitaine, E. Moulines, M. Jordan, E. El **Mhamdi , A. Durmus Ecole Polytechnique , INRIA , U.C. Berkeley , ENS**

- Principal's strategy: decouple the problem and learn first the optimal incentives with a binary search and then run any bandit subroutine.
- The cost to learn the optimal incentives is very small as compared to any subroutine regret.
- •Extension to the linear contextual bandit setting.

•**Setting:** Two players: the principal and the agent with a bandit instance $(\nu_a)_{a \in \mathcal{A}}$ for the principal and known rewards $s = (s_1, \ldots, s_K) \in \mathbb{R}_+^K$ for the agent. Set of actions $\mathcal{A} = |K|$.

Take home message

 $\Re(T) = T \mu^* - \sum \mathbb{E}[X_{A_t}(t) - \mathbb{1}_{a_t}(A_t)\pi(t)]$. *T t*=1

If minimal incentives $\pi_a^{\star} = \max_{a' \in [K]} s_{a'} - s_a$ to enforce $A_t = a$ are known, the problem is reduced to a shifted bandit instance, hence the idea of IPA:

•**Agent's behaviour:** We assume that the agent is myopic and always maximises his instantaneous utility, hence the choice of *A^t*

 $A_t \in \text{argmax}_{a \in A} \{s_a + \mathbb{1}a_t(a)\pi(t)\}$.

Decouple the problem between a first binary search phase to learn the optimal incentives and the run of a bandit subroutine.

•**Binary search steps:** We show that a binary search procedure can be run in $K \lceil \log_2 T \rceil$ rounds such that we obtain $\hat{\pi}_a$ at the end and

 $|\hat{\pi}_a - \pi_a^{\star}|$ $\vert a \vert \leq 2/T$ for any $a \in \mathcal{A}$.

as well $\hat{\pi}_a > \pi_a^{\star}$, and therefore, for any step $t \geq K \lceil \log_2 T \rceil$

 $\mathsf{if}~(a_t, \pi(t)) = (a, \hat{\pi}_a), \text{ then } A_t = a \;.$

- \rightarrow after the binary search, the principal can guide the agent's action with an extra cost of at most 2*/T*.
- •**Bandit subroutine:** Then, ALG (which can be UCB or ETC for instance) is run the bandit instance with rewards $(X_a(1) - \hat{\pi}_a)_{a \in \mathcal{A}} \sim \rho$.

•**Principal's objective:** Maximize his utility and solve

 $maximize$ $\int x\nu_a(dx) - \pi$ over $\pi \in \mathbb{R}_+, a \in [K]$ $\textsf{such that}\ \ a\in\text{argmax}_{a'\in[K]}\left\{\mathbf{s}_{a'}+\mathbb{1}_a(a')\pi\right\}\ ,$

which is equivalent to minimizing her regret (where μ^\star solution of (1))

(1)

Theorem. IPA run over T rounds has an overall regret $\mathfrak{R}(T)$ such that

$\mathfrak{R}(T) \leq \mathcal{O}(\sqrt{KT\log(T)}) \;,$

Setting and objectives

with $\text{Alg} = \text{UCB}$ as the principal's subroutine on the shifted multi-armed bandit after the binary search.

•Set of possible actions A*^t* ⊆ B(0*,* 1), where B(0*,* 1) stands for the unit closed ball in \mathbb{R}^d , family of zero-mean distributions $(\tilde{\nu}_a)_{a\in \mathrm{B}(0,1)}$ such that

for any $a \in B(0, 1), t \in [T], \eta_a(t) \sim \tilde{\nu}_a$.

- From the principal's side, how can we define the optimal incentives to guide the agent's behaviour?
- -How can we learn the optimal incentives as well as playing on the bandit instance?

•Principal's reward: family {(*Xa*(*t*))*a*∈B(0*,*1) : *t* ∈ [*T*]} of independent random variables such that for any $t \in [T]$, $a \in B(0, 1)$,

 $X_a(t) \coloneqq \langle \theta^\star, a \rangle + \eta_a(t)$,

and agent's reward: $(\langle s^\star, a \rangle)_{a \in \mathrm{B}(0,1)}$. At each step t , the principal offers a transfer *κ*(*t,* ·) and aims to design *κ*(*t,* ·) to find

> $maximize \langle \theta^{\star}, a \rangle - \kappa(t, a)$ over $\kappa(t, \cdot) : \mathcal{A}_t \to \mathbb{R}_+$, such that $a \in \text{argmax}_{a' \in A_t} \{ \langle s^*, a' \rangle + \kappa(t, a') \}$.

•**Differences with the multi-armed case:** Although the problem seems very similar, the binary search cannot be run as before due to the set A_t which changes over the steps, hence our definition of the event

- First learn the optimal incentives with a precision 1*/T* through a binary ${\sf search}$ like procedure: $O(K\log_2(T))$ rounds.
- -Then run any bandit subroutine on the shifted bandit instance.

→ **Separate the learning of the optimal incentives from the bandit game to get the optimal regret bound.**

Questions:

Theorem. If Contextual IPA is run with the corruption robust subroutine CW-OFUL (He et al., 2022), the regret of Contextual IPA is bounded as √

 $\Re(T) \leq \mathcal{O}(d \log (dT) + d)$ $T\log(T))$.

Main technical difficulty: the multidimensional binary search that we achieve with the bound from Lobel et al., 2018. Without any extra cost nor assumption on \mathcal{A}_t , we converge towards the optimum!

Volume of S_0 cut along a direction w_1 while the diameter is not reduced along v_1 nor v_2 .

Principal's strategy

Regret bound for the principal-agent game

$$
\mathcal{E}_t \coloneqq \left\{ \max_{a_t^1 \neq a_t^2 \in \mathcal{A}_t} \text{diam } \left(\mathcal{S}_t, \frac{a_t^1 - a_t^2}{\|a_t^1 - a_t^2\|} \right) < \frac{1}{T} \right\} \ ,
$$

to decide wheter Contextual IPA runs a multidimensional binary search or a contextual bandit subroutine.

Extension to the contextual case

• Game: over $T \in \mathbb{N}^\star$ rounds. At any step $t \in [T]$, the principal proposes a transfer $\pi(t)$ to the agent associated with an action $a_t \in \mathcal{A}$. During the round, agent picks action $A_t \in \mathcal{A}$ and their utilities are

 $X_{A_t}(t) - \mathbbm{1}a_t(A_t)\pi(t)$ for the principal, where $X_{A_t}(t) \thicksim \nu_{A_t}$, $s_{A_t} + \mathbb{1}a_t(A_t)\pi(t)$ for the agent.

Recovering a regret bound

