

INCENTIVIZED LEARNING IN PRINCIPAL - AGENT BANDIT GAMES

A. Scheid, D. Tiapkin, E. Boursier, A. Capitaine, E. Moulines, M. Jordan, E. El Mhamdi, A. Durmus Ecole Polytechnique, INRIA, U.C. Berkeley, ENS

(1)

Take home message

- Principal's strategy: decouple the problem and learn first the optimal incentives with a binary search and then run any bandit subroutine.
- The cost to learn the optimal incentives is very small as compared to any subroutine regret.
- Extension to the linear contextual bandit setting.

Setting and objectives

Setting: Two players: the principal and the agent with a bandit instance $(\nu_a)_{a\in\mathcal{A}}$ for the principal and known rewards $s = (s_1, \ldots, s_K) \in \mathbb{R}_+^K$ for the agent. Set of actions $\mathcal{A} = [K]$.

Regret bound for the principal-agent game

Theorem. IPA run over T rounds has an overall regret $\Re(T)$ such that

$\Re(T) \le \mathcal{O}(\sqrt{KT \log(T)}) ,$

with Alg = UCB as the principal's subroutine on the shifted multi-armed bandit after the binary search.

Extension to the contextual case

• Game: over $T \in \mathbb{N}^*$ rounds. At any step $t \in [T]$, the principal proposes a transfer $\pi(t)$ to the agent associated with an action $a_t \in \mathcal{A}$. During the round, agent picks action $A_t \in \mathcal{A}$ and their utilities are

 $X_{A_t}(t) - \mathbb{1}a_t(A_t)\pi(t)$ for the principal, where $X_{A_t}(t) \sim \nu_{A_t}$, $s_{A_t} + \mathbb{1}a_t(A_t)\pi(t)$ for the agent.

• Agent's behaviour: We assume that the agent is myopic and always maximises his instantaneous utility, hence the choice of A_t

 $A_t \in \operatorname{argmax}_{a \in \mathcal{A}} \{ s_a + \mathbb{1}a_t(a)\pi(t) \}$.

• **Principal's objective:** Maximize his utility and solve

maximize $\int x\nu_a(dx) - \pi$ over $\pi \in \mathbb{R}_+, a \in [K]$ such that $a \in \operatorname{argmax}_{a' \in [K]} \{ s_{a'} + \mathbb{1}_a(a')\pi \}$,

which is equivalent to minimizing her regret (where μ^* solution of (1))

• Set of possible actions $\mathcal{A}_t \subseteq B(0,1)$, where B(0,1) stands for the unit closed ball in \mathbb{R}^d , family of zero-mean distributions $(\tilde{\nu}_a)_{a\in B(0,1)}$ such that

for any $a \in B(0,1), t \in [T], \eta_a(t) \sim \tilde{\nu}_a$.

• Principal's reward: family $\{(X_a(t))_{a \in B(0,1)} : t \in [T]\}$ of independent random variables such that for any $t \in [T], a \in B(0, 1)$,

 $X_a(t) \coloneqq \langle \theta^\star, a \rangle + \eta_a(t) ,$

and agent's reward: $(\langle s^{\star}, a \rangle)_{a \in B(0,1)}$. At each step t, the principal offers a transfer $\kappa(t, \cdot)$ and aims to design $\kappa(t, \cdot)$ to find

> maximize $\langle \theta^{\star}, a \rangle - \kappa(t, a)$ over $\kappa(t, \cdot) \colon \mathcal{A}_t \to \mathbb{R}_+$, such that $a \in \operatorname{argmax}_{a' \in \mathcal{A}_t} \{ \langle s^*, a' \rangle + \kappa(t, a') \}$.

• Differences with the multi-armed case: Although the problem seems very similar, the binary search cannot be run as before due to the set \mathcal{A}_t which changes over the steps, hence our definition of the event

$$\mathcal{E}_t \coloneqq \left\{ \max_{\substack{a_t^1 \neq a_t^2 \in \mathcal{A}_t}} \mathsf{diam} \left(\mathcal{S}_t, \frac{a_t^1 - a_t^2}{\|a_t^1 - a_t^2\|} \right) < \frac{1}{T} \right\} ,$$

to decide wheter Contextual IPA runs a multidimensional binary search or a contextual bandit subroutine.

$\Re(T) = T \,\mu^* - \sum \mathbb{E}[X_{A_t}(t) - \mathbb{1}_{a_t}(A_t)\pi(t)] \,.$

Questions:

- From the principal's side, how can we define the optimal incentives to guide the agent's behaviour?
- How can we learn the optimal incentives as well as playing on the bandit instance?
- If minimal incentives $\pi_a^{\star} = \max_{a' \in [K]} s_{a'} s_a$ to enforce $A_t = a$ are known, the problem is reduced to a shifted bandit instance, hence the idea of IPA:
- First learn the optimal incentives with a precision 1/T through a binary search like procedure: $O(K \log_2(T))$ rounds.
- Then run any bandit subroutine on the shifted bandit instance.
- \rightarrow Separate the learning of the optimal incentives from the bandit game to get the optimal regret bound.

Principal's strategy

Recovering a regret bound

Theorem. If Contextual IPA is run with the corruption robust subroutine CW-OFUL (He et al., 2022), the regret of Contextual IPA is bounded as

 $\Re(T) \le \mathcal{O}(d\log(dT) + d\sqrt{T}\log(T)) .$

Main technical difficulty: the multidimensional binary search that we achieve with the bound from Lobel et al., 2018. Without any extra cost nor assumption on \mathcal{A}_t , we converge towards the optimum!

Volume of \mathcal{S}_0 cut along a direction w_1 while the diameter is not reduced along v_1 nor v_2 .

Decouple the problem between a first binary search phase to learn the optimal incentives and the run of a **bandit subroutine**.

• **Binary search steps:** We show that a binary search procedure can be run in $K \lceil \log_2 T \rceil$ rounds such that we obtain $\hat{\pi}_a$ at the end and

 $|\hat{\pi}_a - \pi_a^\star| \leq 2/T$ for any $a \in \mathcal{A}$.

as well $\hat{\pi}_a > \pi_a^*$, and therefore, for any step $t \ge K \lceil \log_2 T \rceil$

if $(a_t, \pi(t)) = (a, \hat{\pi}_a)$, then $A_t = a$.

- \rightarrow after the binary search, the principal can guide the agent's action with an extra cost of at most 2/T.
- **Bandit subroutine:** Then, ALG (which can be UCB or ETC for instance) is run the bandit instance with rewards $(X_a(1) - \hat{\pi}_a)_{a \in \mathcal{A}} \sim \rho$.

Cumulative regret of IPA on a 5 arms, 1-subgaussian rewards bandit.

