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Metric Embedding

An embedding of a metric space (X, dX) into a metric space (Y, dY ) is a function f : X → Y
such that for every pair of points x, y ∈ X , the distance dX(x, y) between x and y in X is closely

preserved in Y under f .

The distortion of an embedding f : X → Y is a measure of howmuch the embedding f stretches
or compresses distances between points. It is formally defined as:

distort(f ) = sup
x,y∈X,x 6=y

dY (f (x), f (y))
dX(x, y)

· sup
x,y∈X,x 6=y

dX(x, y)
dY (f (x), f (y))

where the first term is called the expansion and the second term is called the contraction of the

embedding.

Facilitates dimensionality reduction while maintaining relative distances within a

multiplicative factor (distortion).

Essential for simplifying complex network optimization problems and designing efficient

approximation algorithms, particularly useful for the sparsest cut problem.

Dynamic Algorithms

An algorithm maintains an embedding of a graph G into a metric space (X, dX) dynamically if it
continuously updates an embedding φ : V (G) → X in response to changes inG. For each update
in G, the algorithm adjusts φ to reflect these changes while trying to minimize the distortion of
the original embedding. The process is defined formally as follows:

Dynamic Model: The graph G undergoes a sequence of updates, which may include
additions, deletions, or modifications of edges or vertices.

Update Protocol: After each update, the algorithm outputs the new mapping φt for each

vertex v whose embedding has changed, where t indexes the sequence of updates.

Objective: The goal is to maintain the quality of the embedding φ, such that the
distortion between any two points u, v ∈ V (G) in the embedding space X remains

within acceptable bounds, ideally minimizing any increases in distortion due to updates.

Prior Results

Bourgain [2]: Embed into any `p space with logarithmic distortion.

Johnson and Lindenstrauss [4]: Embed into Euclidean space with 1 + ε distortion

Bartal [1]: Embed into distributions of trees with logarithmic distortion, introduced ball

growing technique

Forster et al. [3]: Dynamic ball growing which can handle edge insertions or deletions.

The Forster et al. dynamic ball maintenance is a key subroutine used by our algorithm.

Main Contributions

(1)We show that there is no fully dynamic algorithm that can explicitly maintain a dynamic em-

bedding into `p space with high probability.

(2) We introduce a dynamic algorithm that achieves an embedding with expected distortion

O(log2 n), where n is the number of vertices in G. This embedding is efficiently maintained over

a sequence of updates with total update time O((m1+o(1) log2 W + Q) log(nW )), whereW is the

maximum edge weight, Q is the total number of updates, and m is the number of edges.

The full version of our paper can be found on arXiv with the QR-code above.

Problem Formulation

Given a weighted, undirected graph G undergoing a sequence of edge weight updates, the ob-
jective is to maintain a dynamic embedding ofG into a normed space (X, `p) such that for every
pair of vertices u and v in G, the distance between φ(u) and φ(v) in X approximates the graph

distance dG(u, v) in G with a bounded distortion factor.

Maintain a mapping φ : G → X such that the expected distortion of distances between

any two vertices u, v ∈ G is minimized.

The updates to the embedding φ should be efficient in response to changes in the graph
G due to edge weight modifications.

Impossibility Results

We first show that maintaining an embedding undergoing edge weight increases and decreases

(fully dynamic) to the original graph yields unbounded distortion. We thus focus on the decre-

mental setting.

Figure 1. Adversarial sequence of graph updates

Algorithm Overview

Our algorithm dynamically maintains a low-distortion embedding of a graph into `p space by effi-

ciently processing edge weight updates. It employs a novel combination of randomized decom-

position and clustering to handle changes dynamically while ensuring the embedding’s fidelity.

Initial Embedding / Static Decomposition: Utilizes a static randomized decomposition to create

an initial embedding of the graph into `p space, setting a baselinewith minimized initial distortion.

Dynamic Updates:

Adjusts embeddings incrementally in response to edge weight modifications,

maintaining the embedding’s integrity and quality. Leverage [3] tools to maintain

partitions from static part.

Recalculates only the affected segments of the embedding, split clusters efficiently to

maintain distortion bound without recomputing decomposition.

Key Takeaways

Introduced the first dynamic embedding into `p space that accommodates edge weight

increases, marking a significant advancement over static methods.

Achieves polylogarithmic distortion with update times competitive with the best-known

algorithms for related problems.

Validates the practicality of dynamic embeddings for handling real-time updates in

complex networks, potentially transforming approaches to network analysis and

optimization.

Future Research: Opens avenues for further refinement in dynamic algorithm design and its

application to other complex data structures and optimization problems.

Experimental Results

Data Set Preparation: Utilized the LastFM Asia social network from the Stanford Network Anal-

ysis Project dataset (SNAP) [5]. Constructed three graphs from subsets of 150, 300, and 600

nodes, with edge weights assigned from a uniform distribution. Graphs underwent 10,000,

5,000, and 1,000 dynamic updates respectively, with each update increasing the weight of a

randomly selected edge.

Evaluation: Implemented the dynamic cut-preserving embedding. Calculated distances between

node pairs post each update and compared these with exact distances computed offline. Results

visualized in Figure 2.

Figure 2. Visualization of average distances in a dynamic metric. The orange line shows the exact average distance

between nodes, computed using a deterministic shortest path algorithm after each query. The blue line illustrates

the average distance from the proposed dynamic embedding algorithm.

Figure 3 presents plots of the ratio of the average distance from our dynamic embedding to the

exact average distance after each query, facilitating direct assessment of embedding distortion.

Note that while the embedding is theoretically non-contractive, it achieves expected contrac-

tiveness. Practical results may show minor fluctuations, especially with fewer queries.

Figure 3. The ratio of the average distance between all pairs of points computed by of our embedding to the exact

average distance between all pairs, after each query.
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