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Exploration in Multi-agent Reinforcement Learning

* Exploration is crucial for multi-agent reinforcement learning
(MARL) in sparse reward settings
* Intrinsic rewards can often help guide the exploration

How to encourage Global
our exploration? . . .
P X Complicates the credit assignment

&

Local
X Not coordinated exploration

* |ICES (Individual Contributions as intrinsic Exploration Scaffolds)
motivates exploration by assessing each agent’s contribution from
a global view :



How to assess individual contributions?

* Bayesian Surprise to Characterize Individual Contributions

Dynamics model

* The contribution r,f,int as the mutual information between the
latent variable z;,; and the action u,@ which is given as

Ttl,int = I(Zt+1?ufl:|5t» u;') = Dy [p(Zt+1|St» uy) Il p(ze41lse ut_l)]



How to assess individual contributions?

* Bayesian Surprise to Characterize Individual Contributions
* CVAE to Estimate the Bayesian Surprise:
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How are these scaffolds utilized effectively?

ul Ql ( 7_1 , ul)
A A
——> Forward Pass
b \
<~ Back Propagation ) | I
uexplore

1

1

1 1
uexploit 5

Sampling

Qtot (Tv u, 3)4—

Text
Mixing Network «— S

yut) o Qu(r"un)

(@)

Decoupled policies

©



How are these scaffolds utilized effectively?

u
—> Forward Pass

<~ Back Propagation

T

: |
1
1
1 1
explore uexplmt 5

Qtot (Tv u, 3)4—
Sampling

: o

Mixing Network «— S

yut) o Qu(r"un)

L
(@)

L

Distinct Objectives ©




How are these scaffolds utilized effectively?

ul Ql ( 7_1 , ul)
A A
——> Forward Pass
b \
<~ Back Propagation ) | I
uexplore

1

1

1 1
uexploit 5

Sampling

Qtot (Tv u, 3)4—

Text
Mixing Network «— S

yut) o Qu(r"un)

(@)

Different algorithms

©



How are these scaffolds utilized effectively?
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Is ICES effective in exploration?
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Take-away

* Key idea:

* Use individual contributions to encourage agents to have more significant
impact on the latent state transition during training time

* Benefits

* ICES directly assigns the exploration credits to individual agents to bypass
global intrinsic reward credit assignment

* More flexibility brought by decoupled exploration and exploitation
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