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Differential Privacy

Dataset
User 1...

User n

Algorithm M Output
Pure-DP
ε-DP ☰ (ε, 
0)-DP

Approx-DP 
δ > 0

(ε, δ)-Differential Privacy (DP)
[Dwork et al.’06]
For every datasets X, X’ differing on a 
single record and every set S of outputs,
Pr[M(X) ∈ S] ≤ eε・Pr[M(X’) ∈ S] + δ



Individualized Privacy Accounting via Subsampling   Ghazi, Kamath, Kumar, Manurangsi, Sealfon

Previous Results: Combinatorial Optimization

Approx-DP Algorithms

Problem Approximation Ratio Additive Error Reference

Set Cover -

[Gupta et al., 
SODA’10]Submodular maximization 

with cardinality constraint

Metric k-means/k-median [Jones et al., 
AAAI’21]
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Our Results: Combinatorial Optimization

Pure-DP Algorithms

Problem Approximation Ratio Additive Error Reference

Set Cover -

[This work]Submodular maximization 
with cardinality constraint

Metric k-means/k-median

“A generic recipe to make previous approx-DP algorithms pure-DP”

* More results on submodular maximization with matroid constraint and shifting heavy hitters in the paper



Individualized Privacy Accounting via Subsampling   Ghazi, Kamath, Kumar, Manurangsi, Sealfon

Amplification by Subsampling

Dataset
User 1...

User n

ε-DP Algo Output

“Subsampling makes the algorithm more private.”

Amplification-by-subsampling Theorem
For ε ≤ 1, the above mechanism is O(p ⋅ ε)-DP

Dataset
User 3...

User n - 5

Sample each 
user with 
probability p
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Differential Privacy

Dataset
User 1...

User n

Algorithm M Output
Pure-DP
ε-DP ☰ (ε, 
0)-DP

Approx-DP 
δ > 0

(ε, δ)-Differential Privacy (DP)
[Dwork et al.’06]
For every datasets X, X’ differing on a 
single record and every set S of outputs,
Pr[M(X) ∈ S] ≤ eε・Pr[M(X’) ∈ S] + δ
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One-Sided DP

Dataset
User 1...

User n

Algorithm M Output
Pure-DP
ε-DP ☰ (ε, 
0)-DP

Approx-DP 
δ > 0

(ε, δ)-Differential Privacy (DP)
[Dwork et al.’06]
For every datasets X, X’ differing on a 
single record and every set S of outputs,
Pr[M(X) ∈ S] ≤ eε・Pr[M(X’) ∈ S] + δ

(ε, δ)-one-sided DP
[Dwork et al.’06]
For every X, X’ s.t. X results from adding a 
record to X’ and every set  S of outputs,
Pr[M(X) ∈ S] ≤ eε・Pr[M(X’) ∈ S] + δ

“Two-sided DP”
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Our Amplification by Subsampling

Dataset
User 1...

User n

ε-one-sided 
DP Algo

Output

“Subsampling makes one-sided-DP algorithm two-sided DP.”

Amplification-by-subsampling Theorem
For ε ≤ 1, the above mechanism is O(p)-DP

Dataset
User 3...

User n - 5

Sample each 
user with 
probability p

For combinatorial opt. problems: suffices to give one-sided-DP algorithm
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Submodular Maximization & Greedy Algo
Submodular Maximization with Cardinality Constraint
● Input: 

○ integer k,
○ dataset X,
○ for each x ∈ X, monotone submodular fx: U → [0, 1]

● Output: S ⊆ U of size k that maximizes F(S) := ∑x∈X fx(S)
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Submodular Maximization & Greedy Algo
Submodular Maximization with Cardinality Constraint
● Input: 

○ integer k,
○ dataset X,
○ for each x ∈ X, monotone submodular fx: U → [0, 1]

● Output: S ⊆ U of size k that maximizes F(S) := ∑x∈X fx(S)

Non-private Greedy Algorithm
S ← Ø
Repeat k times:

Find u such that F(S∪{u}) is maximized
Return S

Gives (1 - 1/e)-approximation
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Repeated Exponential Mechanism
Submodular Maximization with Cardinality Constraint
● Input: 

○ integer k,
○ dataset X,
○ for each x ∈ X, monotone submodular fx: U → [0, 1]

● Output: S ⊆ U of size k that maximizes F(S) := ∑x∈X fx(S)

Private Greedy Algorithm
S ← Ø
Repeat k times:

Find u such that F(S∪{u}) is maximized
using ε0-DP exponential mechanism

Return S

Basic composition ⇒ kε0-DP

Theorem [Gupta et al.’10]
Private Greedy is (ε0⋅log(1/δ), δ)-DP

Theorem [This work]
Private Greedy is ε0-one-sided-DP
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● Pure-DP algorithms for Combinatorial Optimization

○ Observation: Subsampling makes one-sided DP into two-sided DP

○ Suffices to give one-sided DP algorithms

■ Repeated Exponential Mechanism

■ Repeated AboveThreshold

● Open Problem: Can we make our technique work without monotonicity?

Conclusion

Thank you!


