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Abstract
The cold start problem in Recommender Systems
(RSs) makes the recommendation of high-quality
content to new users difficult. While Prefer-
ence Elicitation (PE) can be used to “onboard”
new users, PE in music recommendation presents
unique challenges to classic PE methods, includ-
ing: a vast item (music track) corpus, consid-
erable within-user preference diversity, multiple
consumption modes (or downstream tasks), and
a tight query “budget.” We develop a PE frame-
work to address these issues, where the RS elicits
user preferences w.r.t. item attributes (e.g., artists)
to quickly learn coarse-grained preferences that
cover a user’s tastes. We describe heuristic al-
gorithms that dynamically select PE queries, and
discuss experimental results of these methods on-
boarding new users in YouTube Music.

1. Introduction
Recommender Systems (RSs) play a crucial role in mak-
ing content accessible to users in domains ranging from
e-commerce and product recommendation to the recommen-
dation of content such as news, video, music, and more
(Abel et al., 2011; Hallinan & Striphas, 2016; Linden et al.,
2003; Pal et al., 2020; Covington et al., 2016). Since RSs
typically employ a user’s interactions to improve future rec-
ommendations, they often face the cold start problem, i.e.,
the inability to make high-quality recommendations to new
users with little-to-no history (Lam et al., 2008; Bobadilla
et al., 2012). While the cold-start problem can sometimes be
addressed using informative priors—assuming they exist—
it is often most natural to ask the user for some preliminary
information about their preferences during an onboarding
process, using some form of explicit preference elicitation
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(PE) (Rashid et al., 2008). Elicited preferences can be used
to improve a user’s (initial) recommendations.

In this work, we study PE for the onboarding of new users
of a music recommendation platform. Onboarding in most
domains should be relatively fast and lightweight for the
user, which may impose a soft “budget” on the number of PE
queries that can be asked. However, music recommendation
presents a number of challenges for PE-based onboarding:

• User music preferences are generally diverse, reflecting
multiple interests (e.g., genres, artists, styles, instru-
ments) that often vary with context (e.g., activity, mood,
companions). PE during onboarding should provide
reasonable coverage of these interests.

• Music corpora are massive. Thus, PE queries involving
recommendable items (individual tracks), while pre-
cise, are too fine-grained for onboarding given the tight
“budget.” As such, PE using coarser-grained attributes
(e.g., artists, genres) are more suitable (but must still
inform track-level preferences).

• We get incomplete feedback from the user w.r.t. rec-
ommendation quality, since in any particular listening
context, a user may be in the mood for a particular part
of their diverse taste. Additionally, in music platforms
such as YouTube Music, there are a variety of recom-
mendation tasks that leverage elicited preferences (e.g.,
search, home page, radio). Hence, there is often no
single downstream objective against which to optimize
the PE process.

• The onboarding process should keep the user suffi-
ciently engaged. Hence, each PE query should be
perceived by the user as useful and adding value, to
prevent the user from abandoning the process too soon.

We develop a framework for PE-based onboarding that ad-
dresses these challenges. We assume access to an embed-
ding representation of items (music tracks) from which em-
beddings of attributes such as artists or genres are derived—
we focus on artists here. PE consists of presenting artists
to a user and asking them to select the artists they like (see
Fig. 1). We propose algorithms that adaptively select the
artists to ask about given the user’s previous selections (and
non-selections). To handle the diversity of user interests—
given the limited query budget and multiple (sometimes
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Figure 1. The artist selection interface. Users select artists they
like, and skip those they don’t. The scrollable interface allows for
selection of as many artists as desired, with “Done” confirming
the end of the onboarding session. The artists displayed as the
user scrolls are selected dynamically given earlier selections and
non-selections (or skips).

dynamic) downstream objectives—we develop a coverage
metric that attempts to cover the user’s entire range of pref-
erences. By using artist preferences, PE covers more of
the space than if track preferences were used. This cov-
erage/precision tradeoff is essential when onboarding in
domains with vast corpora like music.

We describe several experiments, conducted on the YouTube
Music platform, showing the effectiveness of our method in
providing domain coverage.

2. Problem Setting
We outline our problem setting and briefly describe a sam-
pling of related work.

2.1. Recommender Domain and Assumptions

We assume an RS designed to recommend items from a large
content corpus, using music recommendation as our domain
of focus, where items are music tracks. Behavior-based
collaborative filtering (CF) is a dominant approach to RS
design in content domains, where methods such as matrix
factorization (Salakhutdinov & Mnih, 2007) or neural CF
(Beutel et al., 2018; Yang et al., 2020) are used to generate
user and item embeddings in some latent space X ⊆ Rd. A

user u’s general affinity for item i is then given by the dot
product or cosine similarity of embeddings φ(u) and φ(i).1

Item embeddings also provide a measure of item similarity.
We assume access to stable item embeddings.

For CF to generate a useful embedding φ(u) for user u, it
requires access to behavioral data (e.g., listens, item ratings)
for u. For new users with no behavior history, good recom-
mendations are not generally possible—even a probabilistic
prior will offer relatively weak recommendations given the
broad variety of musical tastes across typical user popula-
tions. One way to address this cold start problem (Lam et al.,
2008; Bobadilla et al., 2012) is to use preference elicitation
(PE) (Keeney & Raiffa, 1993; Salo & Hamalainen, 2001;
Chajewska et al., 2000; Boutilier, 2002). For new users, PE
may be used as part of an onboarding process designed to
make the service quickly usable and useful. PE methods
require some class of queries designed to elicit information
about a user’s preferences, a specific semantics for user re-
sponses, and a procedure for selecting queries (which often
adapts to a user’s previous responses). For example, PE
queries might ask users for individual item preferences (e.g.,
“do you like track X?”), to compare two items (e.g., “which
track do you prefer, X or Y?”), or for general attribute pref-
erences (e.g., “do you like (tracks by) artist A?” or “do you
prefer genre G to genre H?”). We assume that attributes
(artists) are embedded in the same latent space as tracks so
a user’s artist preferences informs track preferences. While
attribute embeddings can be learned directly (e.g., using CF
(Shi et al., 2014)), we derive them from item embeddings—
an artist embedding is the listen-time-weighted average of
the embeddings of their tracks (refinements of this scheme
are left to future work).

Item-based elicitation is often effective with small item cor-
pora, or when making fine-grained distinctions when the RS
already has a good understanding of a user’s preferences.
However, it is unsuitable for onboarding in RSs with vast
corpora like those in music recommendation—the granular-
ity of item-based PE, while allowing for precision, renders
sufficient coverage of the music domain infeasible during a
time-constrained onboarding process. For this reason, we
focus on attribute-based elicitation, specifically, asking the
user for their preferences over a selection of music artists.2

The interface we use to elicit artist preferences is shown
in Fig. 1. The user can scroll to select as many artists as
desired and select “Done” to terminate the onboarding pro-
cess. Since this delays actual music consumption, and a
user can terminate at any point, it is important that onboard-
ing quickly and effectively gleans preferences that support

1Other predictive signals, history and context are often used to
make more refined predictions.

2Other attributes could include genres, sub-genres, albums,
eras, etc., and combinations of these. We leave exploration of other
query and attribute types to future work.
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downstream recommendations.3

With music RSs, a given user u will request many recom-
mendations over time, often across a variety of contexts
(e.g., engaged in different activities, in different moods or
locations, with different companions, etc.). Moreover, the
range of downstream recommendation tasks induces addi-
tional variability in user preferences. This, together with
the inherent diversity of tastes exhibited by any given user,
means that a user’s preferences generally vary consider-
ably.4 This variety suggests that obtaining broad (albeit
coarse-grained) coverage of a user’s range of preferences is
more important during onboarding than obtaining a precise,
but narrow view, and influences the design of our algorithms
below. Of course, even the space of artists is voluminous,
so the artist queries themselves must be chosen judiciously.
Just as importantly, the PE method must keep users engaged
sufficiently to prevent early termination, before the desired
coverage is attained.

2.2. Related Work

Given the rich history of preference elicitation in the broader
decision analysis, marketing science and AI literatures, and
in RSs specifically, we provide only a brief discussion of
some of the more relevant themes. Both item-based (Cha-
jewska et al., 2000; Boutilier, 2002; Viappiani & Boutilier,
2010) and attribute-based (Viappiani et al., 2006; Chen &
Pu, 2012) elicitation have been widely studied in AI, deci-
sion analysis and non-content-based RSs. In content RSs,
the cold-start problem has been addressed using various PE
techniques, though primarily in an item-based fashion using
notions such as value of information, information gain, or
simpler heuristics (Boutilier et al., 2003; Rashid et al., 2008;
Zhao et al., 2013).

McNee et al. (2003) use a non-adaptive, item-based
popularity-based heuristic for onboarding (and also con-
sider direct user item-specification), but do not consider
attribute-based methods. Work on diversity in recommen-
dations (e.g., Meymandpour & Davis (2020)) and multi-
interest representations (e.g., Weston et al. (2013)) bear on
our motivation for covering a broad set of user interests
during onboarding, though little work explores covering this
diversity during elicitation. One recent exception is bandit-
style (hence item-based) approach of Parapar & Radlinski
(2021) which explicitly elicits in preferences diverse fashion
(though not necessarily for onboarding). The question of

3How different downstream RS components incorporate
elicited artist preferences into their recommendations, specifically,
how they are combined with other signals—and how they are
mapped into track preference predictions—is typically quite intri-
cate and beyond the scope of this article.

4Indeed, multi-interest (Weston et al., 2013) and context-
dependent (Hansen et al., 2020) user representations should gener-
ally be better-suited to music domains than standard CF models.

eliciting preferences to cover a range of downstream tasks,
a key motivation for our approach, does not appear to have
been explicitly studied in the literature.

3. Formulation and Algorithms
We outline our problem formulation in this section along
with algorithms to implement effective PE-based onboard-
ing. As discussed above, the range (and possibly dynamic
nature) of downstream tasks/objectives, together with per-
user preference diversity, suggests that domain coverage
should serve as a key criterion for assessing our understand-
ing of a user’s preferences (see Secs. 3.2 & 3.3). The limited
time “budget” associated with onboarding means that keep-
ing the user engaged is also important (see Sec. 3.1). It also
points to the use of coarse preferences using attributes—in
our case, artists (see Fig. 1). Our PE algorithm for onboard-
ing (Sec. 3.4) brings these considerations together.

3.1. PCTR Modeling

Let X denote the set of all artists in the domain, whose size
may be in the millions. From among these, some process is
used to select a smaller query set Q ⊂ X of artists eligible
to ask the user about during PE. This set is intended to reflect
the varied musical tastes of a wide range of users across
many countries; but it also contains primarily, conditional on
their preference subsegments or micro-genres, more popular
artists. This is to increase the odds of user familiarity when
asked about them. Still, the sheer size of X ensures that
most users will be unfamiliar with most artists in Q. If a
user is presented with a large number of unfamiliar artists,
they are likely to abandon the session providing little, or
no, preference information. Thus the queried artists must be
selected with care.

To address this problem, we train a pCTR model to predict
an artist’s click-through rate (CTR), or probability that a
user will select that artist. The pCTR model is then used to
prioritize the presentation of artists that the user is likely to
select, increasing the odds that the user sees a significant
numbers of artists they know and they like. Such pCTR
models are common in RSs (e.g., McMahan et al. (2013)),
and typically depend on artist features (genre, popularity,
etc.), certain user features, and the user’s past selections/non-
selections in the onboarding process. The latter is one reason
that our PE queries (i.e., artists presented during onboarding)
are selected dynamically and adaptively. In this work we
use a Generalized Additive Model for the CTR prediction
(Hastie et al., 2009). Letting hu denote user u’s history of
selections/non-selections during onboarding at any point in
time, the pCTR for artist i is denoted ri(hu).

If pCTR is the sole criterion used to rank candidate artists,
the PE process tends to ask the user about artists that are
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very similar to those previously selected—unsurprisingly,
similarity to previously selected artists is a strong predictor
of artist selection, and is an input feature to the pCTR model.
This tends to lead to “deep dives” into narrow genres or
groups of very similar artists. While this induces more artist
selections in the near-term, it does little to enhance our
understanding of a user’s diverse tastes. Moreover, it can
be perceived by the user as lacking value, thus increasing
the odds of early termination (hence decreasing selections
in the long run). Since the information contained in pCTR-
based artist selections quickly deteriorates as onboarding
progresses, we augment this objective next.

3.2. Coverage

Another important consideration is the coverage of a user’s
(potentially diverse) tastes, across contexts and downstream
tasks. This requires that the user be shown a set of artists
that spans the track/embedding space. To this end, we first
assume access to a set of target points T in embedding
space, points which are well-spread throughout the space. In
principal, this could be the entire setX , but there are reasons
to make this set smaller as we discuss below. There could
be many strategies for constructing T , we describe one such
construction in Section 3.3. Given the target set, we define
the coverage of a set of artists A ⊆ X w.r.t. T as follows.
For any artist i, let xi ∈ Rd denote its embedding. Standard
(cosine) similarity of two artists is defined as S(xi, xj) =
xi·xj

‖xi‖‖xj‖ ∈ [−1, 1]. We then define the coverage score ofA
(w.r.t. T ) as:

C(A; T ) = 1

|T |
∑
t∈T

max
x∈A

S(t, x). (1)

This reflects that the coverage of a target t ∈ T is given by
the artist in A most similar to it, and that set coverage is the
average over all targets. A higher coverage score implies
that A contains artists that are more similar (closer) to more
targets, with maximum coverage C(A; T ) = 1 attained by
any A | T ⊆ A. To simplify notation we sometimes write
C(A), when T is fixed.

Notice that C is monotone, since C(A ∪ {x}) ≥ C(A)
(definingC(∅) = −1), and is similar to the notion of facility
location coverage (Bateni et al., 2018). C is also submodular.
Letting x(t) = argmaxx∈A S(t, x), this can be shown by
observing:

C(A) + C(A ∪ {x′} ∪ {x′′}) ≤ C(A ∪ {x′}) + C(A ∪ {x′′})

⇔ 1

|T |
∑
t∈T

S(t, x(t))

+
1

|T |
∑
t∈T

max{S(t, x′), S(t, x′′), S(t, x(t))}

≤ 1

|T |
∑
t∈T

max{S(t, x′), S(t, x(t))}

+
1

|T |
∑
t∈T

max{S(t, x′′), S(t, x(t))}

⇔
∑
t∈T

S(t, x(t)) + max{S(t, x′), S(t, x′′), S(t, x(t))}

≤
∑
t∈T

max{S(t, x′), S(t, x(t))}+max{S(t, x′′), S(t, x(t))}

Now, define:

T 0 =
{
t | S(t, x(t)) ≥ max{S(t, x′), S(t, x′′)}

}
T ′ =

{
t | S(t, x′) ≥ max{S(t, x(t)), S(t, x′′)}

}
T ′′ =

{
t | S(t, x′′) ≥ max{S(t, x(t)), S(t, x′)}

}
In case of ties, we assign each target to one of the groups,
so T 0, T ′, and T ′′ are disjoint. We then have that

⇔
∑
t∈T 0

2S(t, x(t)) +
∑
t∈T ′

S(t, x(t)) + S(t, x′)

+
∑
t∈T ′′

S(t, x(t)) + S(t, x′′)

≤
∑
t∈T 0

2S(t, x(t))

+
∑
t∈T ′

S(t, x′) + max{S(t, x′′), S(t, x(t))}

+
∑
t∈T ′′

S(t, x′′) + max{S(t, x′), S(t, x(t))}

⇔
∑
t∈T ′

S(t, x(t)) +
∑
t∈T ′′

S(t, x(t))

≤
∑
t∈T ′

max{S(t, x′′), S(t, x(t))}

+
∑
t∈T ′′

max{S(t, x′), S(t, x(t))} ,

which holds element-wise.

Though submodular function maximization is NP-hard, the
greedy algorithm, which iteratively adds the best item to the
set given those already in it, has a (1− 1/e)-approximation
guarantee for monotone functions (Nemhauser et al., 1978).
In fact, no polynomial-time algorithm may achieve a bet-
ter approximation guarantee unless P = NP (Feige, 1998;
Nemhauser & Wolsey, 1978). To this end, we define the
coverage gain of an artist x w.r.t. some A′:

G(x,A′; T ) = C(A′ ∪ {x}; T )− C(A′; T ).

3.3. Target Set Construction

We now describe our approach to computing the target set
T ⊂ X . Recall that T should spans the embedding space
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well, i.e., each point in the space x ∈ X should have some
t ∈ T close to it. Thus, if, during onboarding, we ask a user
about a set of artists that cover the target set well, we will
have gained sufficient information to offer reasonable initial
recommendations.

We begin the process with a large set of points, in this case,
the set X ⊂ Rd of all artists. A point x ∈ X is τ -covered by
an artist t ∈ T if S(t, x) ≥ τ for some threshold τ . Given
a budget b bounding the size of T , our goal is to find a set
T ⊂ X that maximizes the fraction of τ -covered points in
X . That is, we aim to maximize

f(T ) = |{x ∈ X | maxt∈T S(t, x) ≥ τ}|
|X |

,

subject to |T | = b. This problem is an instance of the
set cover optimization problem (or maximum k-coverage).
This problem is also NP-hard and, unless P = NP, does
not admit a polynomial-time approximation better than 1−
1/e (Feige, 1998). As a special case of submodular function
maximization, a greedy algorithm to target selection ensures
a 1 − 1/e approximation, matching the above hardness
result. In practice, the approximation ratio is often within
few percentage points of the optimum.

There is a direct trade-off between the number of targets
b, and the fraction of X τ -covered by T . While we want
to cover as many points in X as possible, b cannot be too
large for computational reasons (see Section 3.4). In our
music domain, we are more likely to attain good coverage
for a user u if we are able to query artists with which u is
familiar, similar to our motivation for using pCTR above.
However, since the target set is user-independent, we use
the population-level playtime (or popularity) w.r.t. existing
users as a prior over familiarity. Rather than maximize
coverage f(T ), we use the playtime score as a weight and
instead maximize the weighted coverage of T :

w(T ) =
∑
x∈X|maxt∈T S(t,x)≥τ w(x)∑

x∈X w(x)
,

subject to |T | = b, where w(x) is the weight of artist x, i.e.,
their total historical playtime. (Note that other metrics can
be used as weights.) This is an instance of the weighted set
cover problem with weights w(x) and is also submodular,
thus is well-approximated by the greedy algorithm.

Using playtime weights, in Figure 2 (top) we show the
fraction of playtime covered w(T ) as a function of the
size of the target set in our YouTube Music domain. With
b = 4000 targets, we cover more than 90% of playtime at
τ = 0.9. By contrast, Figure 2 (bottom) shows that with
the same b = 4000, we only cover roughly 25% of all
(unweighted) artists X at τ = 0.9. This may be undesirable
for users with niche tastes. For example, a small number
of extremely popular artists skew the playtime distribution

Figure 2. Tradeoff between the number of targets and the fraction
covered. Top: play-time cover, bottom: artist cover.

significantly. To compensate for this effect, we set w(x) to
playtime raised to some power less than one—the square
root of playtime provides a suitable trade-off in practice.

3.4. Algorithm

We combine the considerations above into an algorithm
for the dynamic selection of artists to present to a user
during onboarding. Our algorithm is a simple score-and-
sort procedure which scores artists dynamically, using a
weighted sum of pCTR and coverage. Specifically, the
score of artist xi ∈ Q given history hu of user u is

Score(xi;hu) = ri(hu) + λG(xi,A(hu); T ) , (2)

where A(hu) is the set of artists shown to the user (either
selected or unselected), and λ is a trade-off parameter.

Notice that ri is a complex set function as pCTR input fea-
tures depend on previously displayed artists, as well as the
(non-deterministic) user responses (selection/non-selection).
Hence, the combined score Equation (2) is not generally sub-
modular. If the pCTR score ri(hu) is significantly smaller
than the coverage term λG(xi,A(hu); T ) for all xi, then
Score(xi;hu) is approximately submodular. In this case,
Horel & Singer (2016) show that the greedy algorithm can
achieve approximation guarantees under some assumptions.

In practice, we send a batch of artists to the user’s device,
as sending artists one-by-one induces unacceptable latency.
We do not address the batch optimization problem here.
Instead we compute the scores for all candidate artists in
Q and construct a batch of size k by collecting the k top-
scoring artists. When the user selects an artist or scrolls past
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the current batch, we construct the next batch (conditioned
on the updated user history) and send it to their device. We
leave batch optimization to future work.

Choosing the next artist for presentation requires com-
puting Score(xi;hu) for all (remaining) artists xi ∈ Q
and sorting these artists by their scores.5 The complex-
ity of the latter step is O(|Q| ln |Q|) per iteration, which
can be reduced to O(k|Q|) for batch size k. To compute
Score(xi;hu), we must compute the pCTR score ri(hu)
and the coverage score C(A(hu) ∪ {xi}; T ). pCTR ri(hu)
is obtained by a single call to the pCTR model. For cov-
erage, we check which targets xi is most similar to, i.e.,
S(t, xi) > maxx∈A(hu) S(t, x). Therefore, we need to
compute |T | similarity scores S(t, xi) for each candidate
artist xi, so overall computational cost is O(|Q| · |T |) per
iteration (or batch). Overall, O(|Q| · |T |) is the dominant
term, which means that keeping |T | small significantly re-
duces complexity.

4. Results
In this section we describe experimental results from prelim-
inary A/B tests onboarding new YouTube Music users with
one of two algorithms: the first is pCTR, which uses only
the pCTR score ri(hu) to dynamically rank artists during
onbaording PE (i.e., Equation (2) with λ = 0); the second
is Coverage, which uses the combined score for ranking
(Equation (2) with λ > 0).

We first assess whether Coverage achieves better cover-
age than pCTR. To this end, we examine the preferences
provided by users with each algorithm and compute their
coverage score (Equation (1)), where A is taken to be the
set of artists selected by the user. We find that Coverage
indeed achieves a higher average coverage score of 0.57
compared to 0.51 for pCTR, i.e., inducing +12.3% improve-
ment in coverage, with 95% confidence interval [11.5%,
13.2%]. To give a sense of the distribution, Figure 3 shows
CDFs of coverage scores for both algorithms, demonstrating

5We do not consider the cost of computing T , since it is a
one-time computation that only needs to be updated periodically.

that Coverage shifts to higher coverage values.

Apart from coverage, we examine various metrics that as-
sess preference elicitation effectiveness of the two methods,
specifically, differences in the average number of artists
selected per user, the average number of artists viewed,
and the number of users with at least one artist selection.
We observe a slightly greater number of selections for
Coverage compared to pCTR— +1.24% selections (95%
CI [−0.32%, 2.80%])—and more users with at least one
selection— + 0.49% (95% CI [−0.23%, 1.21%]). At the
same time, the number of shown artists is actually slightly
lower for Coverage,−0.08% (95% CI [−0.97%, 0.80%]),
which means that average CTR is higher using Coverage
than pCTR, despite the fact that pCTR optimizes only for
(immediate) selection. We note, however, that none of
these differences is statistically significant (0 is inside the
CIs); we therefore conclude that the increased coverage of
Coverage is obtained without additional effort from the
user in terms of time spent or number of selections.

Without going into details on how user preferences are
used downstream, we note that we do see evidence of im-
proved initial recommendations with Coverage compared
to pCTR. For example, the number of active users on
the first day after onboarding is higher +0.3% (95% CI
[0.04%, 0.55%]).

5. Conclusion
We have presented a framework for eliciting user prefer-
ences over domain-specific attributes—artists in the music
domain examined—during the onboarding of new users of
an RS. We argued that one should explicitly trade-off im-
mediate user engagement with the quality of information
collected, and to this end proposed an objective that com-
bines pCTR with embedding space coverage. We presented
efficient algorithms for choosing artists to display to the user,
and showed that some of them enjoy favorable approxima-
tion guarantees. Finally, we showed that our approach leads
to gains in primary performance metrics in the real-world
onboarding of new users of YouTube Music.

There are a number of interesting future directions. It will
be interesting to tackle the batch optimization problem de-
scribed in Section 3.4. We plan to test alternative artist
selection strategies and compare them to the one explored
here. One such method maintains a probability distribution
over a user’s preferences, selecting artists using expected re-
duction in entropy. Our coverage objective is more tractable
since we do not have to model the distribution, but the
entropy-based objective should perform better w.r.t. some
metrics, inducing an interesting tradeoff. Additional prob-
abilistic objectives include expected value of information
w.r.t. post-onboarding recommendation tasks.
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