

Provable Robust Watermarking for Al-**Generated Text**

UCSB

Xuandong Zhao, Prabhanjan Ananth, Lei Li, Yu-Xiang Wang {xuandongzhao, prabhanjan, leili, yuxiangw}@cs.ucsb.edu

Motivation

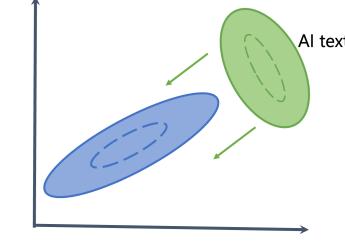
Potential harms of LLM

- Generate fake news
- Contaminate web content
- Assist in academic dishonesty
- If most text in daily life is AI generated?

Detect Al-generated text

Distinguish Al-generated text from human



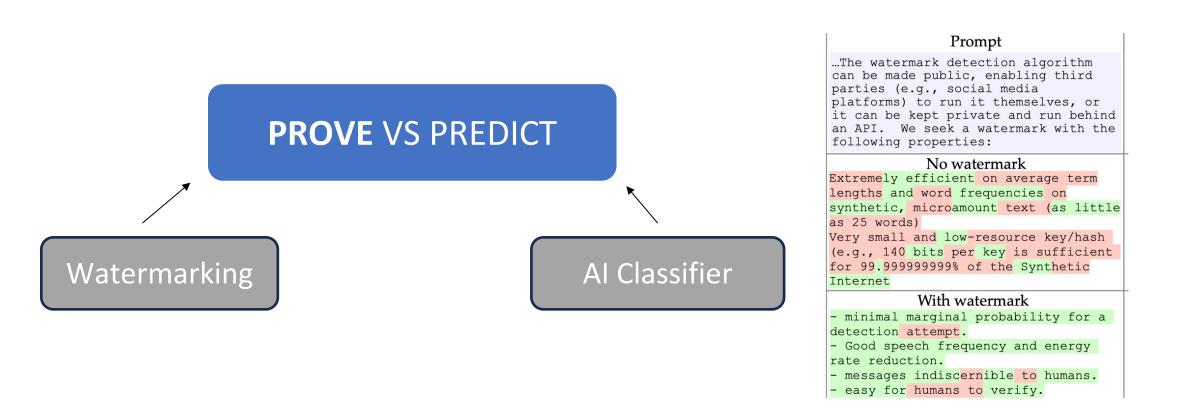


Al-generated text increasingly resembles human-generated text

ZeroGPT/GPTZero/DetectGPT

- Not robust to distribution changes
- Prone to biases
- Vulnerable to adversarial attacks

Watermarking digital text



GPTWatermark

Watermarking text generation

- 1. Randomly generate a watermark key k. Use watermark key to partition the vocabulary into a **Green List** of size $\gamma |V|$
- 2. For t = 1, 2, ...
 - 1. Apply the language model to prior tokens to obtain a logit vector ℓ_t
 - 2. Add δ to each green list logit. Apply the Softmax operator

$$\hat{\mathbf{p}}_{t}[v] = \begin{cases} \frac{\exp(\boldsymbol{\ell}_{t}[v] + \delta)}{\sum_{i \in Red} \exp(\boldsymbol{\ell}_{t}[i]) + \sum_{i \in Green} \exp(\boldsymbol{\ell}_{t}[i] + \delta)}, & v \in Green \\ \frac{\exp(\boldsymbol{\ell}_{t}[v])}{\sum_{i \in Red} \exp(\boldsymbol{\ell}_{t}[i]) + \sum_{i \in Green} \exp(\boldsymbol{\ell}_{t}[i] + \delta)}, & v \in Red. \end{cases}$$

3. Decode the next token using the watermarked distribution $\hat{\mathbf{p}}_t$

Watermarking text detection

- 1. Use the watermark detection key k to find the Green List
- 2. Tokenize the suspect text and calculate the number of green list tokens $|\mathbf{y}|_G = \sum_{t=1}^n \mathbf{1}(y_t \in G)$
- 3. Assume the null hypothesis is H_0 : The text sequence is generated with no knowledge of the green list rule. Compute the *z*-statistic for this test:

$$z = (|\mathbf{y}|_G - \gamma n) / \sqrt{n\gamma(1 - \gamma)}$$

4. If $z > \tau$, the suspect text is watermarked

Theoretical framework

• ω -Quality of watermarked output

$$D\left(\hat{\mathbf{p}}_t \| \mathbf{p}_t\right) \le \omega$$

• α -Type I error ("No false positives"):

$$\mathbb{P}\left[\mathsf{Detect}(\mathsf{k}, \boldsymbol{y}) = 1 \; ; \; \frac{(\hat{\mathcal{M}}, \mathsf{k}) \sim \mathsf{Watermark}(\mathcal{M})}{\boldsymbol{y} \sim \mathcal{A}(\boldsymbol{x}, \mathsf{aux})} \right] \leq \alpha_{(\boldsymbol{x}, \mathcal{M})}.$$

• β -Type II error ("No false negatives"):

$$\mathbb{P}\left[\mathsf{Detect}(\mathsf{k}, \boldsymbol{y}) = 0 \; ; \; \frac{(\hat{\mathcal{M}}, \mathsf{k}) \sim \mathsf{Watermark}(\mathcal{M})}{\boldsymbol{y} \sim \hat{\mathcal{M}}(\boldsymbol{x})} \right] \leq \beta_{(\boldsymbol{x}, \mathcal{M})}.$$

Security property

The adversary needs to make enough edits to evade detection.

Robustness property

GPTWatermark robustness to editing

Twice the robustness!

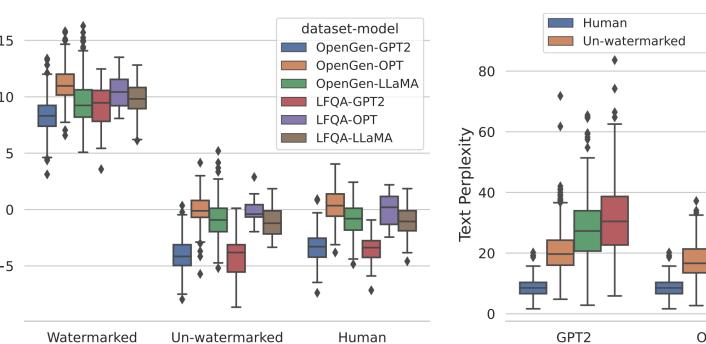
$$z_{\boldsymbol{u}} \geq z_{\boldsymbol{y}} - \max\{\frac{(1+\gamma/2)\eta}{\sqrt{n}}, \frac{(1-\gamma/2)\eta}{\sqrt{n-\eta}}\}.$$

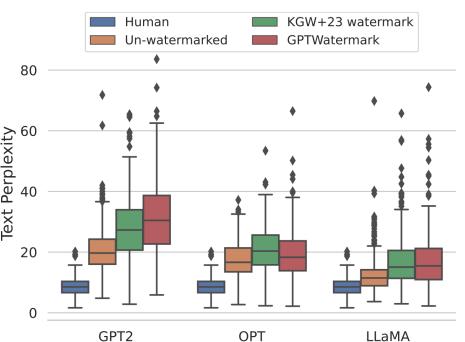
KGW+23 watermark robustness to editing

$$z_{\boldsymbol{u}} \ge z_{\boldsymbol{y}} - \max\{\frac{(2+\gamma/2)\eta}{\sqrt{n}}, \frac{(2-\gamma/2)\eta}{\sqrt{n-\eta}}\}.$$

Experiment results

z-score and text perplexity





Robustness against paraphrasing attack

Setting	Method	OpenGen				LFQA			
		1% FPR		$10\%~\mathrm{FPR}$		1% FPR		$10\% \ \mathrm{FPR}$	
		TPR	F1	TPR	F1	TPR	F1	TPR	F1
No attack	KGW+23 GPTWatermark	1.000 1.000	$0.995 \\ 0.995$	1.000 1.000	$0.952 \\ 0.952$	1.000 1.000	$0.995 \\ 0.995$	1.000 1.000	$0.952 \\ 0.952$
ChatGPT	KGW+23 GPTWatermark	0.565 0.866	0.704 0.910	$0.853 \\ 0.961$	0.747 0.818	$0.327 \\ 0.442$	$0.453 \\ 0.568$	$0.673 \\ 0.865$	0.490 0.584
DIPPER-1	KGW+23 GPTWatermark	$0.386 \\ 0.729$	$0.546 \\ 0.830$	$0.738 \\ 0.922$	$0.720 \\ 0.837$	$0.372 \\ 0.639$	$0.534 \\ 0.770$	$0.740 \\ 0.909$	$0.767 \\ 0.865$
DIPPER-2	KGW+23 GPTWatermark	$0.490 \\ 0.777$	$0.646 \\ 0.862$	0.810 0.941	$0.769 \\ 0.852$	$0.432 \\ 0.693$	0.595 0.810	$0.845 \\ 0.948$	0.839 0.894
BART	KGW+23 GPTWatermark	$0.342 \\ 0.590$	$0.505 \\ 0.730$	$0.667 \\ 0.861$	$0.759 \\ 0.857$	$0.457 \\ 0.656$	$0.617 \\ 0.784$	$0.783 \\ 0.885$	0.836 0.897

Distinguishing human-written text

