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Introduction

Convection Diffusion Equation

—eAuy +  b.Vu = f in
Diffusion term  Convection term Source term
w=uy on I'P,

Variable Description Variable Description
QcCR” Bounded Domain reQul Spatial point in Domain
€ Diffusion coefficient  wu(x) Unknown scalar function
b € Wh>(Q)?  Convective velocity — u, € H'/?(I'”)  Dirichlet boundary value
feL?Q) External source term
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Singularly Perturbed Differential Equations (SPDE)

—eu(x) +u'(x) =1, for x € (0,1),
u(0) =u(1) =0
Suppose, we set € = 0, the above example will be converted as first-order ODE
W(z)=1for0<z <1
@ The exact solution will not satisfy both boundary conditions
@ This problem has no solution in C1[0,1]
@ We infer that when € is near zero, the solution behaves badly in some way

@ These types of differential equations are called singularly perturbed differential
equations (SPDE)
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Singularly Perturbed Differential Equations (SPDE)

@ Solution approaches a discontinuous limit — Galerin Slutioniiau=0.0)

150 { = Analytical solution

whene —-0and z =1

@ Due to this boundary layer, the numerical
solution shows spurious oscillations.

@ Stabilization techniques are used to get rid
of these spurious oscillations o

02 04 06 08 10
e Finding an optimal stabilization parameter

. Figure: Oscillations in Galerkin solution
is a challenge

4/16



Introduction

Numerical Schemes for Partial Differential Equation

@ Finite Difference Method
@ Finite Element Method
@ Finite Volume Method

@ Local Projection Stabilization
e Streamline Upwind Petrov Galerkin (SUPG)

@ Physics Informed Neural Network
@ DeepONet
o Fourier Neural Operator
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Galerkin Weak Form of the SPDE

Find u such that for all v € H}()

a(u,v) = (f,v) (1)
where the bilinear form a(-,-) : HY(Q) x H}(Q) — R is defined by

a(u,v)z/geu’v’dx—i—/gbu’vdw (2)
(o) = | fudo G

(-,-) is the L2(£2) inner product.
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Streamline Upwind Petrov Galerkin Technique(SUPG)

The residual of equation is :

R(u) = —eu” +bu' — f (4)

Modified weak form: Find up, € V3, such that:

ah(uh, ”Uh) = e(Vuh, V’Uh) + (b - Vup, ’Uh>

+ Z Ti(—eAuh +b-Vu, — fn,b- Vvh)gh
i€Qp R

(5)

Stabilization term

= (f.on) + (g,vn)pny  Yop €V}

7, € L?(€2) is a user-chosen stabilization parameter.
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Stabilized FEM: SUPG

Stabilization Parameter 7

Standard formula:

bh
For local Peclet number, Pe = 5¢)
€

h 1
= 2 (cothi (Pe) - ) (6)
exp(x) + exp(—x)

exp(x) — exp(—)

T

where coth =

Limitations:

e Std. 7 gives the exact solution only for the 1D problems
e Std. 7 technique has limited performance in complex cases

Objective: Develop a Neural Network model to identify an optimal stabilization
parameter for 1D and 2D cases
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SPDE-Net

o Developed an ANN-based supervised and L? EM techniques for predicting the
stabilization parameter in the SUPG method for one-dimensional SPDEs.

@ Developed a training dataset based on the equation coefficients and demonstrated
the prediction of global and local variants of stabilization parameter 7 with ANN.

@ Showed that ANN-aided FEM solvers solve one-dimensional SPDEs with lesser
numerical error than that with pure neural network solvers such as PINNs.

“Sangeeta Yadav, Sashikumaar Ganesan, “SPDE-Net: Neural Network based prediction of
stabilization parameter for SUPG technique”’, Proceedings of the 13th Asian Conference on Machine

Learning, PMLR 157:268-283, 2021
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SPDE-Net for 1D convection-diffusion equation

7i(0) = Golei, bi, hi) (7)
;(0) = H{(e;, bi, hi, 74) (8)
N
:uperm'sed = argmin Z loss (722(9)7 Ti) (9)
=1
N
22 Error Minimization — argmin Z loss (a1(0)7 u’l) (10)
=1

where, Gy is 6 parameterized SPDE-Net, H is the FEM solution, 7; is the stabilization
parameter, u is the analytical solution and N is the number of training examples.
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SPDE-Net

SPDE-Net
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Figure: SPDE-Net: An end-to-end deep learning+FEM framework for solving SPDE
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SPDE-Net

L? Error Minimization

@ Global 7: Predict single 7 for whole domain.

@ Local 7: Predict 2 values, 7| and 75 for non-boundary and boundary layer regions.

In this particular case, the boundary region is either near z = 0(for b < 0) or
x = 1(for b > 0). For b > 0:

1 0
1 0
M= (11)
0 NCe||$72
Tored = [71(6), 72(0)] (12)
7A_local = MTpred (13)

12/16



SPDE-Net

Evaluation Metrics

Y (F = 7)?
MSE = 14
RMS N (14)
1
L®Error = (/ (usupg(%) - uanalytica|)2d$> : (15)
Q
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SPDE-Net

Qualitative Comparison
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SPDE-Net

Qualitative Comparison
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SPDE-Net Results

Performance Comparison

Table: Performance comparison of different techniques for validation and test dataset

Validation data Test data
Technique | ||a(7) — ullz2(oy,) | 17 — 7llz2n) | [18(7) — ullrz@y | 1T — 7llz2@y)
PINN 8.11e—3 NA 7.82e—3 NA
Supervised 5.13e—6 2.79e—-7 7.88e—6 3.72e—T7
L? EM(750c) 6.42e—5 NA 1.70e—4 NA
L% EM(7y) 5.00e—6 3.33e—6 7.76c—6 4.83e—7
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SPDE-Net Results

@ SPDE-Net: Neural Network-based prediction of stabilization parameter for SUPG

technique Sangeeta Yadav, Sashikumaar Ganesan Proceedings of The 13th Asian
Conference on Machine Learning, PMLR 157:268-283, 2021.

e THANK YOU
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