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Galactic Center Excess of γ-ray (GCE)

Hypothesis I: An otherwise unseen, unresolved population of millisecond pulsars (point sources).
Hypothesis II: Dark Matter annihilation, e.g. , with mass ~ 40 GeV (diffuse source).χχ → bb̄

⊃
morphology:

spherical-like,

extended up to 15°

spectrum:

peak at 2 GeV,

tails uncertain

Fermi telescope image

|<—      40°      —>|

data: 2009 - now

3



Galactic Center γ-ray: components

⊃
excess

4



Galactic Center γ-ray: components

⊃
excess

+
Fermi bubble

4



Galactic Center γ-ray: components

⊃
excess

+
Fermi bubble

+
 + bremsstrahlungπ0

4



Galactic Center γ-ray: components

⊃
excess

+
Fermi bubble

+
 + bremsstrahlungπ0

+ +⋯
inverse Compton scattering

4



Galactic Center γ-ray: components

⊃
excess

+
Fermi bubble

+
 + bremsstrahlungπ0

+ +⋯
inverse Compton scattering

4

90%+ of photons
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Question 1: morphology of GCE
Point sources: millisecond pulsars may traces known stellar distributions in the galactic bulge

Dark matter: Generalized NFW with inner slope parameter γ ~ 1.2    (  for small  ).ρ ∝ r−γ r
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examples:

γ = 1.2γ = 1.0

⋯⋯
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(unknown location)

Computing point source

(non-poissonian) likelihood is expensive!



Question 0: modeling gas-correlated emissions
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Question 0: modeling gas-correlated emissions
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Uncertainties on modeling interstellar gas emission can greatly affect fits of the GCE,

due to the photon number difference.

Different groups have reconstructed gas-correlated emissions ( +bremsstrahlung) 
using different physics & fitting assumptions.
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- Need for more flexible templates for the GCE signal

- Need for more flexible templates for the gas-correlated foreground

- Need for faster computation of point source (non-poissonian) likelihood

- Need a unified framework to understand systematics

}

- We use GPU-accelerated differentiable probabilistic programming to

   specify flexible models and perform efficient inference on them.
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Our model in differentiable probabilistic programming
a common framework for bayesian inference problems
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xp

μp

Pois (xp ∣ μp)

p (μp)

For each pixel p

prior distribution

expected photon #

realization (compare with data)

poisson draw

NumPyro JAX
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xp

μp
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For each pixel p

Sbub

⃗S gas

⃗S ICS
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+

For each PS i = 1…nPS

For each PS population {disk, bulge, NFW}

point source contributions
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ELBO

sampling -> optimization via built-in SVI

- Guess a posterior . We use an Inverse Autoregressive Flow. qλ

NumPyro

- Minimize  by maximizing ELBO (evidence lower bound).DKL(qλ | | true posterior)

SVI = Stochastic Variational Inference:
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Performance
- Our fiducial γ-ray model has 42 parameters.

- Pipeline still in testing.

- A simplified version is available on github

           github.com/yitiansun/gce-prob-prog
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- Takes ~10 mins to fit & sample. (NUTS takes ~ 5 hours for 50k samples.)
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http://github.com/yitiansun/gce-prob-prog
http://github.com/yitiansun/gce-prob-prog
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- We model gamma-ray emission in the Galactic Center using differentiable 
probabilistic programming.


- We can specify flexible forward models and efficiently do inference on them, 
with a unified framework to probe systematics.


- Goal: Robustly understand the nature of the Galactic Center Excess signal.

= + +⋯


