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Source: Midjourney. Prompt: LLMs in 2023.
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Discrete generative modeling

• Problem: generative modeling of discrete objects  , where   
takes discrete values from   

• Useful because: 
• Many things in the real world are discrete 

x = [x1, ⋯, xD] xd
{1,⋯, K}
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materials molecules structures robotic design



Generative models with maximum flexibility
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• Generate from any starting point in any order
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• Given an order  

•

σ

log pθ(x) = log pθ(xσ(1)) + log pθ(xσ(2) |xσ(1)) + log pθ(xσ(3) |xσ(1), xσ(2)) + ⋯
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Given 
words

Word being 
predicted 
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• Test time likelihood evaluation is  🤦𝒪(D)
• Leads to training non-scalability in energy-based training 🤦

• min
θ

DKL(pθ(x) ∥
f(x)
Z

)
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The dream of discrete generative modeling
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• Any-order generation
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The dream of discrete generative modeling
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• We can do anything we like if we have access to the marginals 
• Comparing likelihoods

? ?
?
≥



How do we learn the marginals?
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• By enforcing marginalization self-consistency:

pθ( ) pθ( ) pθ( )+=

= +<latexit sha1_base64="/rTDNkyNWkSNWIqEkIavK2JjEME="></latexit>
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p✓(1010??)
<latexit sha1_base64="q9ac3CGeb9WXXBuUAoVJus4H6FU="></latexit>
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variable is marginalized out
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• Marginalization self-consistency: 
 

 

pθ(xσ(<d)) = ∑
xσ(d)

pθ(xσ(≤d)),

∀σ ∈ SD, xi ∈ {1,⋯, K}, d ∈ {1,⋯, D}
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• Marginalization self-consistency: 
 

 

pθ(xσ(<d)) = ∑
xσ(d)

pθ(xσ(≤d)),

∀σ ∈ SD, xi ∈ {1,⋯, K}, d ∈ {1,⋯, D}

• When  is large, split into parallel self-consistency constraints: 

 

K
pθ(xσ(<d))pϕ(xσ(d) |xσ(<d)) = pθ(xσ(≤d)),
∀σ ∈ SD, x ∈ {1,⋯, K}D, d ∈ {1,⋯, D}
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max
θ,ϕ

𝔼x∼pdata
log pθ(x)

 s.t. marginalization self-consistency constraints

• (Theoretically justified) two-stage training: 
• Stage 1: Learn the conditionals  — maximizing log-likelihood 

lower-bound 
• Stage 2: Distill the marginals  — minimizing marginalization 

self-consistency errors for the

ϕ

θ
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min
θ,ϕ

DKL(pθ ∥
f
Z

)

 s.t. marginalization self-consistency constraints

• Penalized objective:  

•    DKL(pθ ∥ p) + λ Self-consistency Penalty(pθ,ϕ)

• Scalable Training 
• KL divergence: REINFORCE + Persistent block-Gibbs sampling 
• Penalty: randomly sampling the self-consistency constraints
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• Ising model, molecule generation
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• Modeling marginals make training scalable 
• Ising model, molecule generation

Figure 5: Ising model: 2000 samples are generated for each method.

Figure 6: Target property matching: 2000 samples are generated for each method.

[C][=C][C][=C][C][=C][Ring1][=Branch1]

[?][?][?][?][C][=C][Ring1][=Branch1]

[C][=C][C][=C][?][?][?][?][?][?][?][?][?]�

Figure 7: Conditionally generate towards low lipophilicity from user-defined substructures of Benzene. Left:
Masking out the left 4 SELFIES characters. Right: masking the right 4-20 characters.

Molecular generation with target property In this task, we are interested in training generative
models towards a specific target property of interest g(x), such as lipophilicity (logP), synthetic acces-
sibility (SA) etc. We define the distribution of molecules to follow p⇤(x) / exp(�(g(x) � g⇤)2/⌧),
where g⇤ is the target value of the property and ⌧ is a temperature parameter.

We train ARM and MaM for lipophilicity of target values 4.0 and �4.0, both with ⌧ = 1.0 and
⌧ = 0.1. Both models are trained for 4000 iterations with batch size 512. Results are shown in
Figure 6 and Table 5 (additional figures in Appendix B). Findings are consistent with the Ising model
experiments. There is a small gap in the performance of MaM against ARM, but MaM supports
any-order modeling and scales to problems with much larger dimension.

7 Conclusion

In conclusion, marginalization models are a novel family of generative models for high-dimensional
discrete data that offer scalable and flexible generative modeling with tractable likelihoods. These
models explicitly model all induced marginal distributions, allowing for fast evaluation of arbitrary
marginal probabilities with a single forward pass of the neural network. Marginalization models
also support scalable training for any-order generative modeling, which previous methods struggle
to achieve under the setting of distribution matching. Potential future work includes designing new
neural network architectures that automatically satisfy the marginalization self-consistency.
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Results — Energy-based training
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• Modeling marginals make training scalable 
• Ising model, molecule generation

[C][=C][C][=C][C][=C][Ring1][=Branch1]

[?][?][?][?][C][=C][Ring1][=Branch1]

[C][=C][C][=C][?][?][?][?][?][?][?][?][?]⋯

Conditionally generate molecules towards low lipophilicity from user-defined substructures.
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• Marginals are learnable/distillable 



Conclusions
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• Marginals are learnable/distillable 

• Marginals —> scalable energy-based autoregressive 
modeling



Thank you! 

arxiv and code coming soon..
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