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Source: Midjourney. Prompt: LLMs in 2023.
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Discrete generative modeling

* Problem: generative modeling of discrete objects X = [x;, ---, xp], where x,
takes discrete values from {1,:--, K}

e Useful because:

e Many things in the real world are discrete

materials molecules structures robotic design



Generative models with maximum flexibility

* Generate from any starting point in any order

?
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Any-order autoregressive models [Uria et al., 2013; Hoogeboom et al. 2021]
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Any-order autoregressive models [Uria et al., 2013; Hoogeboom et al. 2021]

 Given an order o

» log py(x) = 10g py(xs(1)) +108 Py(Xsa) | X5(1)) +108 Py(Xay [ X1y Xp(2) +

 Order agnostic lower bound of log likelihood:

» log py(x) = log E_ py(x | 0) > |E,log py(x | o)

The dog barks
—— ~—— P(The dog barks) = P(dog) X P(barks | dog) X P(The | dog barks)

Word being Given
predicted words



Learning conditionals have a scalability issue



» Likelihood evaluation requires sequential conditionals:
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. min Dgy (py(x) || @)
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The dream of discrete generative modeling

* We can do anything we like if we have access to the marginals
« Comparing likelihoods




How do we learn the marginals?

By enforcing marginalization self-consistency:

g

po(701077) | — pe(001077) || + pe(101077) 5
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« Marginalization self-consistency:

pQ(X0(<d)) = Z P@(Xo—(gd)),

Xo(d)

Vo € Sy, x; € {1,--,K},d e {1,-



12

How do we learn the marginals?

« Marginalization self-consistency:

PQ(X(;(<d)) = Z P@(Xo—(gd)),
Xo(d)

Vo € $p,x; € {1,---,K},de {1,---,D}

- When K is large, split into parallel self-consistency constraints:

Pe(Xa(<d))P¢(Xa(d) | Xo(<d)) = PoXo(<a))»
Vo € Sp,x € {1,--,K}P, de {1,---,D)
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How do we learn the marginals? — Maximum likelihood training

E |
nel,?bx *~Pdata oL o(X)

s.t. marginalization self-consistency constraints



E 1
T By 02PN

s.t. marginalization self-consistency constraints

* (Theoretically justified) two-stage training:

» Stage 1: Learn the conditionals ¢» — maximizing log-likelihood
lower-bound

» Stage 2: Distill the — minimizing marginalization
self-consistency errors for the
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How do we learn the marginals? — Energy-based training
(reverse KL)
f

min D —
Y KL(Pg | Z)
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min Dy (py || =)
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How do we learn the marginals? — Energy-based training
(reverse KL)
f

min Dgp(pg Il =)
0,0 /

s.t. marginalization self-consistency constraints
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. /
min Dgp(pg || )
0,0 /

s.t. marginalization self-consistency constraints

 Penalized objective:

» Dx1.(pg |l p) + A Self-consistency Penalty(p, ;)

* Scalable Training
« KL divergence: REINFORCE + Persistent block-Gibbs sampling
 Penalty: randomly sampling the self-consistency constraints
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Results — Maximum likelihood training
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* We show this for binary-MNIST, text8, molecules
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Results — Maximum likelihood training

» Marginals are distillable
* We show this for binary-MNIST, text8, molecules

0.1111, 0.0000 -14.2229, -16.1155  -26.9883, -28.8949 -39.1542, -42.2621 -51.3186, -53.8418 -61.0715, -63.9271 -67.4851,-71.1942 -79.8951, -84.4266

Table 1: Performance Comparison on Binary-MNIST

Model NLL (bpd) | Spearman’s{ Pearson{ LL inference time (s) |
AO-ARM-E-U-Net 0.148 1.0 1.0 661.98 + 0.49
AO-ARM-S-U-Net 0.149 0.996 0.993 132.40 £+ 0.03
MaM-U-Net 0.149 0.992 0.993 0.018 + 0.00

GflowNet-MLP 0.189 - — _
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Results — Energy-based training
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» Modeling marginals make training scalable
» Ising model, molecule generation
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Conditionally generate molecules towards low lipophilicity from user-defined substructures.
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Conclusions



- Marginals are learnable /distillable



- Marginals are learnable /distillable

- Marginals —> scalable energy-based autoregressive
modeling
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Thank you!

arxiv and code coming soon..



