Generative Marginalization Models

Sulin Liu, Peter Ramadge, Ryan Adams

Princeton University

Discrete generative modeling

* Problem: generative modeling of discrete objects X = [x;, ---, xp], where x,
takes discrete values from {1,---, K}

* Problem: generative modeling of discrete objects X = [x;, ---, xp], where x,
takes discrete values from {1,---, K}

e Useful because:

* Problem: generative modeling of discrete objects X = [x;, ---, xp], where x,
takes discrete values from {1,---, K}

e Useful because:
e LLMs!

Source: Midjourney. Prompt: LLMs in 2023.

* Problem: generative modeling of discrete objects X = [x;, ---, xp], where x,
takes discrete values from {1,---, K}

e Useful because:

Discrete generative modeling

* Problem: generative modeling of discrete objects X = [x;, ---, xp], where x,
takes discrete values from {1,:--, K}

e Useful because:

e Many things in the real world are discrete

materials molecules structures robotic design

Generative models with maximum flexibility

* Generate from any starting point in any order

?

5=

Any-order autoregressive models [Uria et al., 2013; Hoogeboom et al. 2021]

Any-order autoregressive models [Uria et al., 2013; Hoogeboom et al. 2021]

 Given an order o

» log py(x) = 10g py(xs(1)) +108 Py(Xsa) | X5(1)) +108 Py(Xay [X1y Xp(2) +

 Given an order o

» log py(x) = 10g py(xs(1)) +108 Py(Xsa) | X5(1)) +108 Py(Xay [X1y Xp(2) +

 Order agnostic lower bound of log likelihood:

» log py(x) = log E py(x | 0) > E_ log py(x | o)

Any-order autoregressive models [Uria et al., 2013; Hoogeboom et al. 2021]

 Given an order o

» log py(x) = 10g py(xs(1)) +108 Py(Xsa) | X5(1)) +108 Py(Xay [X1y Xp(2) +

 Order agnostic lower bound of log likelihood:

» log py(x) = log E_ py(x | 0) > |E,log py(x | o)

Any-order autoregressive models [Uria et al., 2013; Hoogeboom et al. 2021]

 Given an order o

» log py(x) = 10g py(xs(1)) +108 Py(Xsa) | X5(1)) +108 Py(Xay [X1y Xp(2) +

 Order agnostic lower bound of log likelihood:

» log py(x) = log E_ py(x | 0) > |E,log py(x | o)

The dog barks
—— ~—— P(The dog barks) = P(dog) X P(barks | dog) X P(The | dog barks)

Word being Given
predicted words

Learning conditionals have a scalability issue

» Likelihood evaluation requires sequential conditionals:
lOg pe(.x,') = IOg pe(xg(l)) + log pg(xa(z) |XG(1)) + log pe(xa(3) |X6(1), xd(z)) + ...

» Likelihood evaluation requires sequential conditionals:
log py(x) = log pe(x,1y) + 108 Py, | Xs1)) + 108 Py | Xp(1)s Xo2) + -
» Test time likelihood evaluation is O(D) £

» Likelihood evaluation requires sequential conditionals:
10g pe(.x,') = lOg pe(xg(l)) + log pg(xa(z) |XG(1)) + log pe(x6(3) |X0(1), xd(z)) + ...
» Test time likelihood evaluation is O(D) £

- Leads to training non-scalability in energy-based training £2

» Likelihood evaluation requires sequential conditionals:
10g pe(.x,') = lOg pe(xg(l)) + log pg(xa(z) |XG(1)) + log pe(xa(3) |'XG(1)’ xd(z)) + ...
» Test time likelihood evaluation is O(D) £

- Leads to training non-scalability in energy-based training £2

. min Dgy (py(x) || @)
0 /

The dream of discrete generative modeling

* We can do anything we like if we have access to the marginals
* Any-order generation

The dream of discrete generative modeling

* We can do anything we like if we have access to the marginals
* Any-order generation

10

The dream of discrete generative modeling

* We can do anything we like if we have access to the marginals
« Comparing likelihoods

How do we learn the marginals?

By enforcing marginalization self-consistency:

g

po(701077) | — pe(001077) || + pe(101077) 5

11

12

How do we learn the marginals?

12

How do we learn the marginals?

« Marginalization self-consistency:

pQ(X0(<d)) = Z P@(Xo—(gd)),

Xo(d)

Vo € Sy, x; € {1,--,K},d e {1,-

12

How do we learn the marginals?

« Marginalization self-consistency:

PQ(X(;(<d)) = Z P@(Xo—(gd)),
Xo(d)

Vo € $p,x; € {1,---,K},de {1,---,D}

- When K is large, split into parallel self-consistency constraints:

Pe(Xa(<d))P¢(Xa(d) | Xo(<d)) = PoXo(<a))»
Vo € Sp,x € {1,--,K}P, de {1,---,D)

13

How do we learn the marginals? — Maximum likelihood training

13

How do we learn the marginals? — Maximum likelihood training

E |
Hel,?bx *~Pdata oL o(X)

13

How do we learn the marginals? — Maximum likelihood training

E |
nel,?bx *~Pdata oL o(X)

s.t. marginalization self-consistency constraints

E 1
T By 02PN

s.t. marginalization self-consistency constraints

* (Theoretically justified) two-stage training:

» Stage 1: Learn the conditionals ¢» — maximizing log-likelihood
lower-bound

» Stage 2: Distill the — minimizing marginalization
self-consistency errors for the

14

How do we learn the marginals? — Energy-based training
(reverse KL)

14

How do we learn the marginals? — Energy-based training
(reverse KL)
f

min D —
Y KL(Pg | Z)

14

How do we learn the marginals? — Energy-based training
(reverse KL)
f

min Dy (py || =)
0,0 7z

s.t. marginalization self-consistency constraints

14

How do we learn the marginals? — Energy-based training
(reverse KL)
f

min Dgp(pg Il =)
0,0 /

s.t. marginalization self-consistency constraints

* Penalized objective:

» Dx1.(pg |l p) + A Self-consistency Penalty(p, ;)

14

. /
min Dgp(pg ||)
0,0 /

s.t. marginalization self-consistency constraints

 Penalized objective:

» Dx1.(pg |l p) + A Self-consistency Penalty(p, ;)

* Scalable Training
« KL divergence: REINFORCE + Persistent block-Gibbs sampling
 Penalty: randomly sampling the self-consistency constraints

15

Results — Maximum likelihood training

» Marginals are distillable
* We show this for binary-MNIST, text8, molecules

15

Results — Maximum likelihood training

» Marginals are distillable

* We show this for binary-MNIST, text8, molecules

0.1111, 0.0000 -14.2229, -16.1155 -26.9883, -28.8949 -39.1542, -42.2621 -51.3186, -53.8418

-61.0715, -63.9271

-67.4851, -71.1942

-79.8951, -84.4266

15

Results — Maximum likelihood training

» Marginals are distillable
* We show this for binary-MNIST, text8, molecules

0.1111, 0.0000 -14.2229, -16.1155 -26.9883, -28.8949 -39.1542, -42.2621 -51.3186, -53.8418 -61.0715, -63.9271 -67.4851,-71.1942 -79.8951, -84.4266

Table 1: Performance Comparison on Binary-MNIST

Model NLL (bpd) | Spearman’s{ Pearson{ LL inference time (s) |
AO-ARM-E-U-Net 0.148 1.0 1.0 661.98 + 0.49
AO-ARM-S-U-Net 0.149 0.996 0.993 132.40 £+ 0.03
MaM-U-Net 0.149 0.992 0.993 0.018 + 0.00

GflowNet-MLP 0.189 - — _

16

Results — Energy-based training

» Modeling marginals make training scalable
» Ising model, molecule generation

» Modeling marginals make training scalable
» Ising model, molecule generation

16

Ising Model - 10x10 Lattice Ising Model - 30x30 Lattice
1 Random 1 Random
Ground Truth Ground Truth
0.03 1 MaM-Any-Order

1 MaM-Any-Order
[1 GFlowNet

>
1 ARM-Fixed-Order = 0.0
] ARM-MC-Fixed-Order o
(@)
0.01
x : 0.00 :
0 20 40 0 100 200 300

Scores

Scores

» Modeling marginals make training scalable
» Ising model, molecule generation

§ [C][=C][C][=C]
Y 0
HT e HN\ N/H\< W\N/)‘H
OJ HN—NH @ r "
\ N
N C P
O [C][=C][C][=CIIC][=C][Ringl] [=Branch1] bl M AN~ A
g - g N\\\/X e 2

[C][=C][Ringl] [=Branchil]

Conditionally generate molecules towards low lipophilicity from user-defined substructures.

18

Conclusions

- Marginals are learnable /distillable

- Marginals are learnable /distillable

- Marginals —> scalable energy-based autoregressive
modeling

19

Thank you!

arxiv and code coming soon..

