

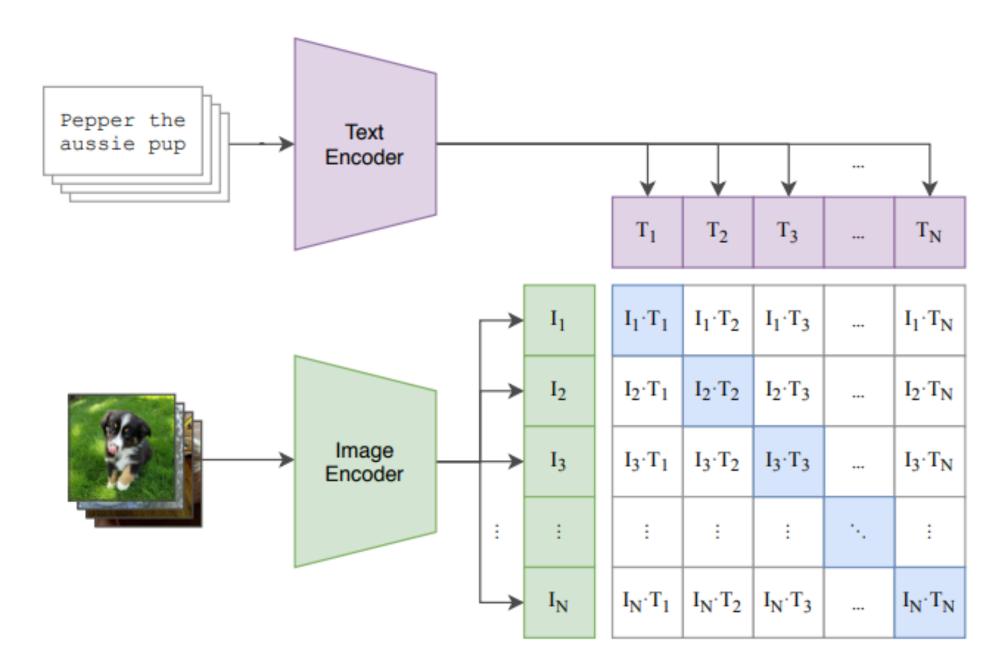
# **Carnegie Mellon University** Cleveland Clinic

### Multimodal Representation Learning of Cardiovascular Magnetic Resonance Imaging

Jielin Qiu<sup>\*1</sup>, Peide Huang<sup>\*1</sup>, Makiya Nakashima<sup>2</sup>, Jaehyun Lee<sup>2</sup>, Jiacheng Zhu<sup>1</sup>, Wilson Tang<sup>2</sup>, Pohao Chen<sup>2</sup>, Christopher Nguyen<sup>2</sup>, Byung-Hak Kim<sup>3</sup>, Debbie Kwon<sup>2</sup>, Douglas Weber<sup>2</sup>, Ding Zhao<sup>1</sup>, David Chen<sup>2</sup> <sup>1</sup> Carnegie Mellon University, <sup>2</sup> Heart Vascular and Thoracic Institute, Cleveland Clinic, <sup>3</sup> CJ AI Center \* marked as equal contribution

## Motivation

text pairs collected from Internet.



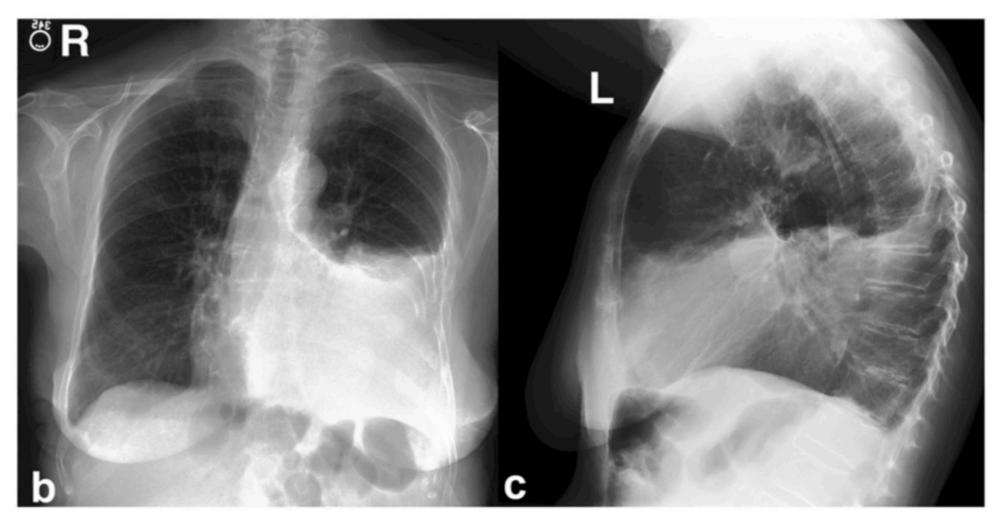
CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training examples

Contrastive image-text pre-training leverage the natural alignment between image and text pairs to provide co-supervision for each domain and achieved good performance on the natural image-



### Motivation

explicit labels in healthcare.



chest radiographs (frontal and lateral)

Johnson, A.E.W., Pollard, T.J., Berkowitz, S.J. et al. MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Sci Data 6, 317 (2019). https://doi.org/10.1038/s41597-019-0322-0

### Contrastive image-text pre-training is crucial for clinical imaging applications, given the lack of

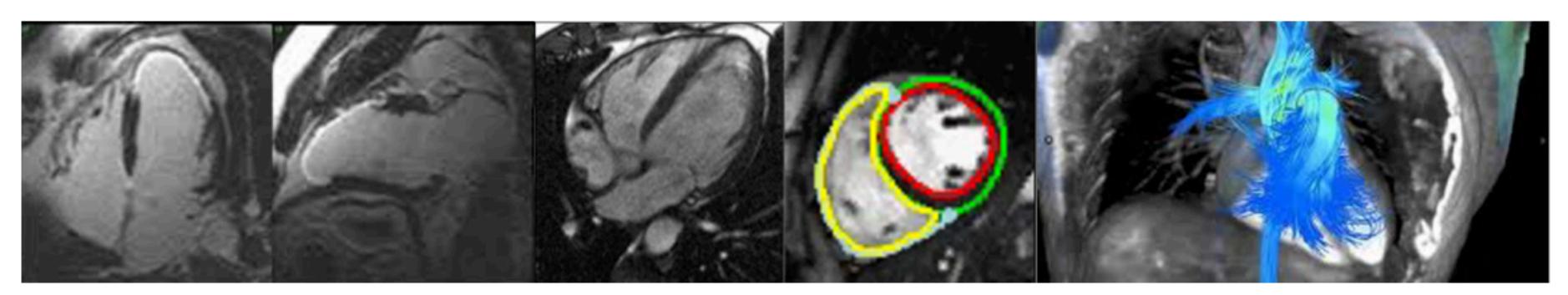
| EXAMINATION: CHEST (PA AND LAT)                                                                                                                                                                                                                                                    |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| INDICATION: year old woman with ?pleural effusion // ?pleural effusion                                                                                                                                                                                                             |  |  |  |  |  |
| TECHNIQUE: Chest PA and lateral                                                                                                                                                                                                                                                    |  |  |  |  |  |
| COMPARISON:                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| FINDINGS:                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Cardiac size cannot be evaluated. Large left pleural effusion is new. Small<br>right effusion is new. The upper lungs are clear. Right lower lobe opacities<br>are better seen in prior CT. There is no pneumothorax. There are mild<br>degenerative changes in the thoracic spine |  |  |  |  |  |
| IMPRESSION:                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Large left pleural effusion                                                                                                                                                                                                                                                        |  |  |  |  |  |

radiology report



## What Is Cardiac Magnetic Resonance Imaging (CMR)?

- perfusion within a single study.
- Each type of image has different characteristics, which make them sensitive to different pathophysiologies.
- findings that synthesize from multiple image types and views.



Examples of Cardiac magnetic resonance (CMR) images

CMR allows to visualize the 3D cardiac anatomy and function in an unlimited number of views. CMR studies are able to visualize the morphology, motion, tissue characteristics, and even tissue

The associated radiology report incorporates findings that describe both individual images and

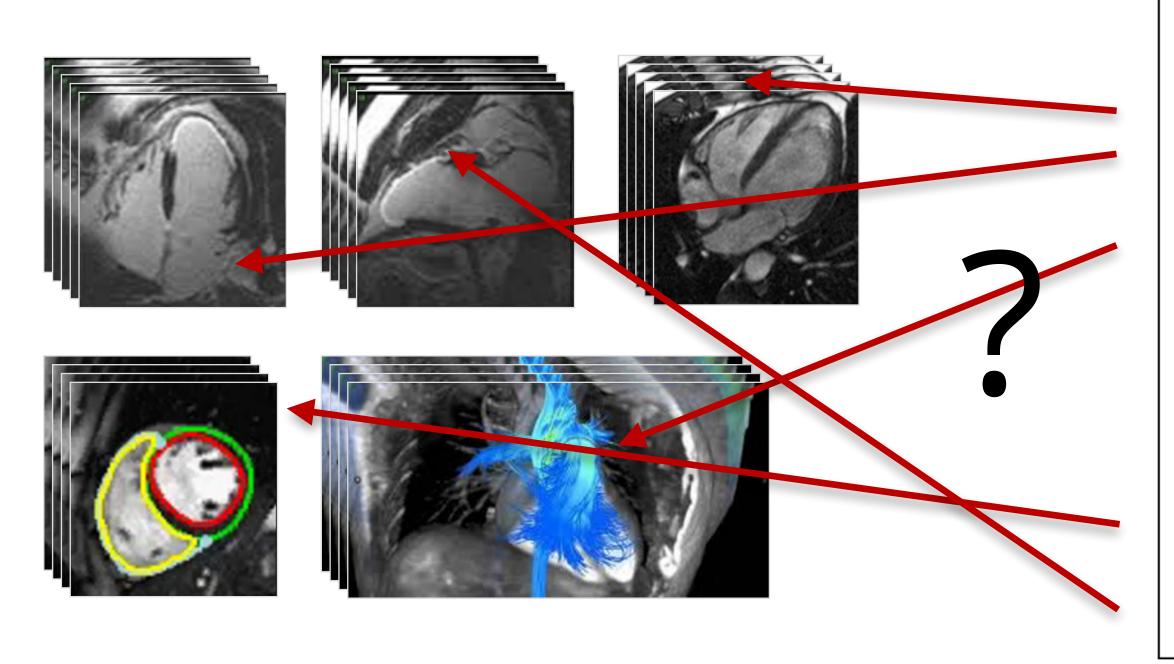


Carnegie

Mellon

## **Challenges in Contrastive Pre-training for CMR**

- - 0
  - Multiple co-morbidities of the patients 0
- Far less data available compared to other popular clinical modalities



Weak alignment between hundreds of images (with different views and types) and a clinical report Information Synthesize from both a single frame and motion from a series of frames

### Impression:

1. There are no definite findings to suggest prior ischemic damage or an infiltrative process. There is mild patchy increased signal on delayed imaging in the mid inferior septum at the RV insertion point, which is a non-specific finding, and suggestive of mild interstitial fibrosis. 2. The left ventricle is dilated with concentric hypertrophy and moderately reduced systolic function, EF 39%. There are no segmental wall motion abnormalities. Quantitative values are as noted above. 3. The right ventricle is dilated with moderately reduced systolic function, EF 38%.

4. Normal aortic, mitral, and tricuspid valve function.

5. Mildly dilated aortic root measuring 4.0cm. Mildly prominent ascending thoracic aorta measuring 3.9-cm.

6. Mildly dilated main pulmonary artery, suggestive of pulmonary hypertension.



### **Contributions of Our Work**

### **CMRformer**

A multimodal learning framework that addresses the weak alignment problem of CMR

### **CMR** dataset

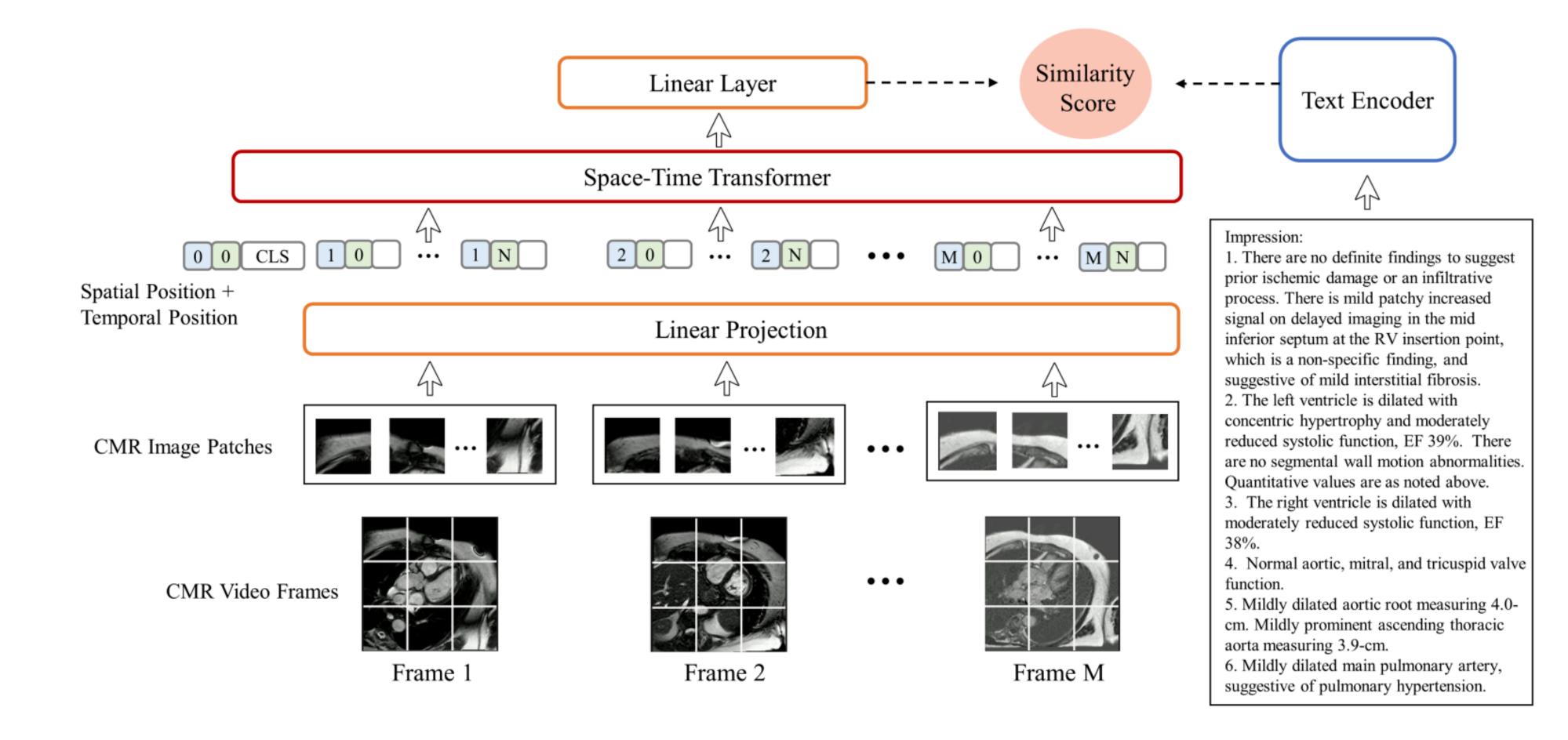
A comprehensive dataset consisting of 13,786 studies derived from actual clinical cases

### **Cardiomyopathies dataset**

An expert-labeled dataset of 1939 studies for the diagnosis of various cardiomyopathies

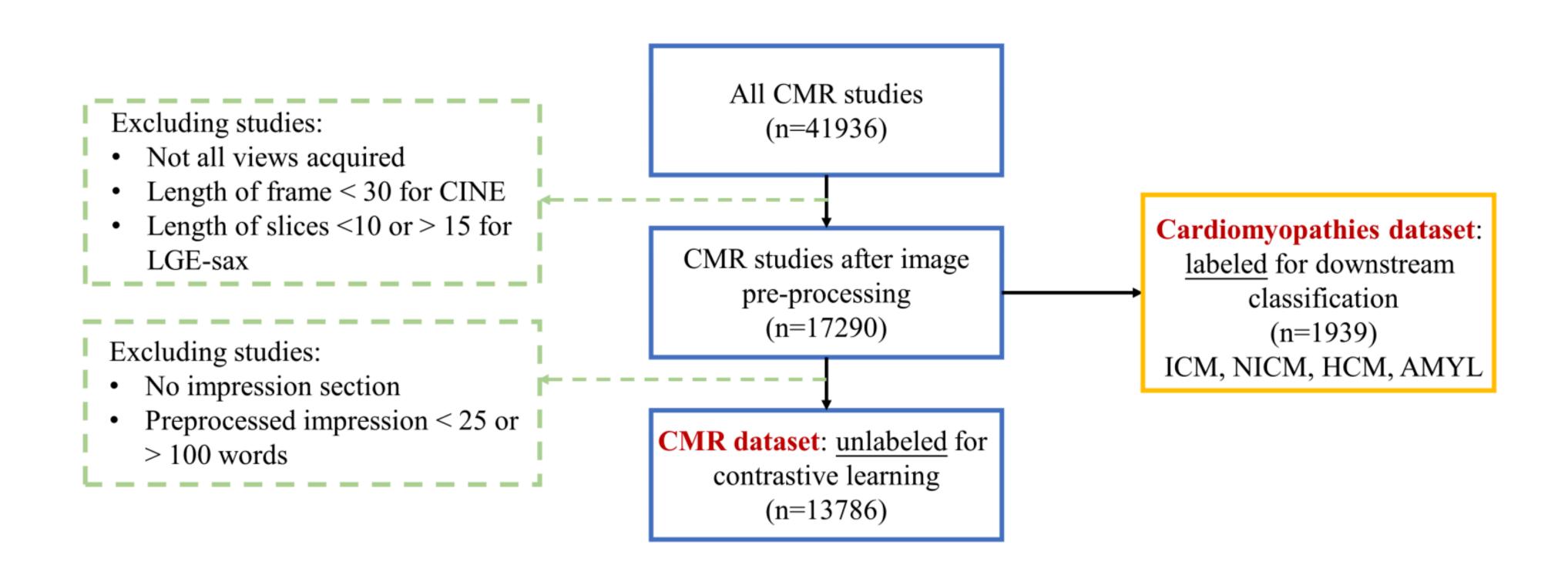


### **Overall Architecture**





### **Data Prepossessing of the Dataset**



Carnegie Mellon University Cleveland Clinic



## Statistics and Comparison with existing CMR datasets

Table 1: Statistics of length of impression sections from text reports.

| Text Length | Count | Percentage |
|-------------|-------|------------|
| 20-30       | 728   | 5.3%       |
| 30-40       | 2445  | 17.7%      |
| 40 - 50     | 2926  | 21.2%      |
| 50-60       | 2666  | 19.3%      |
| 60-70       | 2078  | 15.1%      |
| 70-80       | 1425  | 10.3%      |
| 80-90       | 929   | 6.7%       |
| 90-100      | 589   | 4.3%       |

| Source | Studies            | Image Types          | Labels                                     |
|--------|--------------------|----------------------|--------------------------------------------|
| ACDC   | 150                | Cine                 | segmentation                               |
| DSB-CC | $1,\!140$          | Cine                 | end-systolic and end-diastolic volumes     |
| STACOM | <200               | varies (mostly Cine) | varies (mostly segmentation)               |
| Ours   | $13,\!786/1,\!939$ | Cine, LGE            | radiology reports/cardiomyopathy diagnosis |

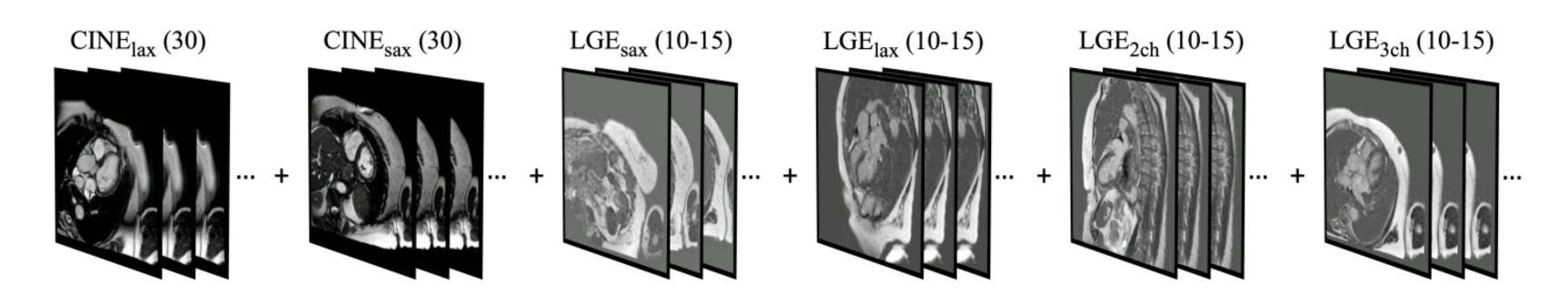
Table 2: Statistics of the number of images of each study.

| Number of Images | Count | Percentage |
|------------------|-------|------------|
| 0-200            | 61    | 0.4%       |
| 200-300          | 24    | 0.2%       |
| 300 - 400        | 1166  | 8.5%       |
| 400-500          | 12054 | 87.4%      |
| 500-600          | 126   | 0.9%       |
| 600-700          | 79    | 0.6%       |
| 700-800          | 162   | 1.2%       |
| > 800            | 114   | 0.8%       |

### Table 3: Comparison with existing CMR datasets.



### **CMR Sequences as Video Input**



each image is duplicated to be consistent with  $LGE_{sax}$ .

Figure 4: Example of CMR image sequences constructed by  $CINE_{lax-sax}$  +  $LGE_{lax-sax-2ch-3ch}$ , where (·) represents the number of images of each type-view combination. For  $CINE_{lax-sax}$ , each frame represents the time dimension. For  $LGE_{sax}$ , each frame corresponds to the depth dimension, and for  $LGE_{lax-2ch-3ch}$ ,



## **Experimental Results for Retrieval Tasks**

- Learned representations showed better performance than zero-shot results
- More types/views contributed better performance
- Increasing the number of CMR images resulted in better performance

Table 4: Experimental results for retrieval experiments. ( $\cdot$ ) represents the number of input frames. Zero-Shot evaluation was done using  $CINE_{lax-sax} + LGE_{lax-sax-2ch-3ch}$ .

| Mathad                                        | Text-t | o-Video     | Retrieval | Video | -to-Text | Retrieval |       |
|-----------------------------------------------|--------|-------------|-----------|-------|----------|-----------|-------|
| Method                                        | R@5    | R@10        | R@50      | R@5   | R@10     | R@50      | RSUM  |
| Zero-shot (16)                                | 0.3    | 0.4         | 1.8       | 0.2   | 0.4      | 1.5       | 4.6   |
| $CINE_{sax}$ (8)                              | 9.4    | 15.0        | 38.6      | 9.2   | 14.9     | 39.1      | 126.2 |
| $CINE_{lax-sax}$ (8)                          | 13.9   | 21.1        | 45.2      | 13.3  | 19.9     | 44.3      | 157.7 |
| $LGE_{lax-sax-2ch-3ch}$ (8)                   | 14.1   | 22.3        | 50.3      | 14.2  | 22.3     | 50.8      | 174.1 |
| $CINE_{lax-sax} + LGE_{lax-sax}$ (16)         | 16.4   | 23.9        | 54.0      | 15.4  | 23.9     | 54.6      | 188.1 |
| $CINE_{lax-sax} + LGE_{lax-sax-2ch-3ch}$ (1)  | 6.3    | 9.7         | 27.0      | 6.3   | 9.6      | 27.6      | 86.7  |
| $CINE_{lax-sax} + LGE_{lax-sax-2ch-3ch}$ (4)  | 14.5   | 21.8        | 46.7      | 14.0  | 21.8     | 45.3      | 164.0 |
| $CINE_{lax-sax} + LGE_{lax-sax-2ch-3ch}$ (8)  | 14.8   | 23.7        | 51.0      | 14.4  | 23.4     | 51.1      | 178.5 |
| $CINE_{lax-sax} + LGE_{lax-sax-2ch-3ch}$ (16) | 17.9   | 25.9        | 53.1      | 17.3  | 26.0     | 54.1      | 194.3 |
| $CINE_{lax-sax} + LGE_{lax-sax-2ch-3ch}$ (32) | 17.7   | 26.5        | 55.3      | 17.8  | 26.1     | 56.2      | 199.8 |
| $CINE_{lax-sax} + LGE_{lax-sax-2ch-3ch}$ (64) | 18.5   | <b>28.1</b> | 56.3      | 18.1  | 27.5     | 56.4      | 204.8 |



### **Experimental Results for Cardiomyopathies Classification Task**

- We observed a correlation between the linear probing and the retrieval performance,
  - 0

Table 5: Linear probing results on the Cardiomyopathies dataset for downstream disease classification task.

| Mode | 1 |
|------|---|
|------|---|

Zero-shot SimCLR  $CINE_{sax}$  (8)  $CINE_{lax-sax}$  (8)  $LGE_{lax-sax-2ch-3ch}$  (8)  $CINE_{lax-sax} + LGE_{lax-sax-2ch-3ch}$  (10)  $CINE_{lax-sax} + LGE_{lax-sax-2ch-3ch}$  (6)

Model

Zero-shot SimCLR  $CINE_{sax}$  (8)  $CINE_{lax-sax}$  (8)  $LGE_{lax-sax-2ch-3ch}$  (8)  $CINE_{lax-sax} + LGE_{lax-sax-2ch-3ch}$  (1)  $CINE_{lax-sax} + LGE_{lax-sax-2ch-3ch}$  (64)

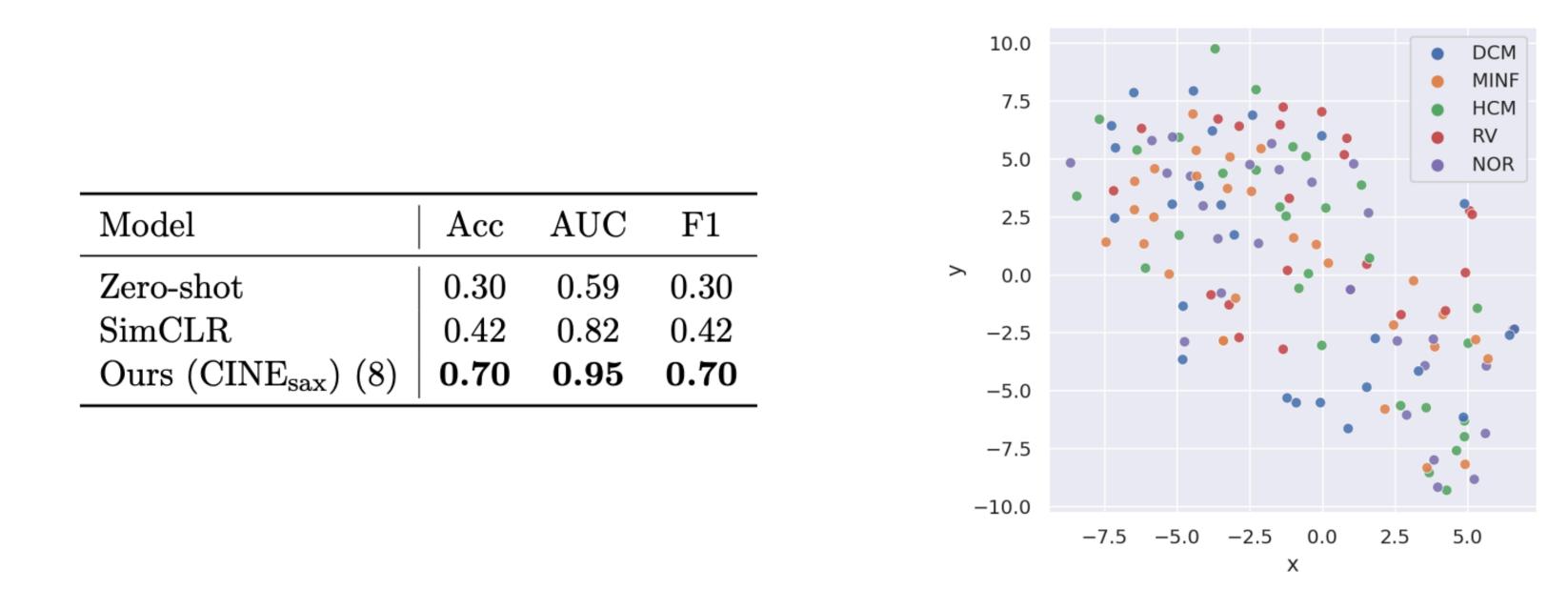
CMRformer learned valuable CMR representations that are transferrable to downstream tasks.

|     |      | NICM |      |      | ICM  |      |  |
|-----|------|------|------|------|------|------|--|
|     | Acc  | AUC  | F1   | Acc  | AUC  | F1   |  |
|     | 0.69 | 0.69 | 0.71 | 0.77 | 0.62 | 0.41 |  |
|     | 0.71 | 0.71 | 0.74 | 0.75 | 0.62 | 0.40 |  |
|     | 0.75 | 0.75 | 0.77 | 0.79 | 0.71 | 0.55 |  |
|     | 0.80 | 0.80 | 0.83 | 0.84 | 0.76 | 0.64 |  |
|     | 0.81 | 0.81 | 0.82 | 0.84 | 0.79 | 0.67 |  |
| 16) | 0.82 | 0.82 | 0.84 | 0.84 | 0.77 | 0.65 |  |
| 64) | 0.84 | 0.84 | 0.85 | 0.84 | 0.79 | 0.67 |  |
|     |      | AMYL |      | HCM  |      |      |  |
|     | Acc  | AUC  | F1   | Acc  | AUC  | F1   |  |
|     | 0.93 | 0.70 | 0.43 | 0.90 | 0.79 | 0.66 |  |
|     | 0.93 | 0.69 | 0.43 | 0.94 | 0.84 | 0.78 |  |
|     | 0.93 | 0.75 | 0.50 | 0.96 | 0.93 | 0.87 |  |
|     | 0.96 | 0.81 | 0.66 | 0.98 | 0.97 | 0.94 |  |
|     | 0.96 | 0.84 | 0.70 | 0.98 | 0.98 | 0.94 |  |
| L6) | 0.95 | 0.80 | 0.63 | 0.99 | 0.99 | 0.97 |  |
| 64) | 0.97 | 0.86 | 0.76 | 0.99 | 0.99 | 0.97 |  |

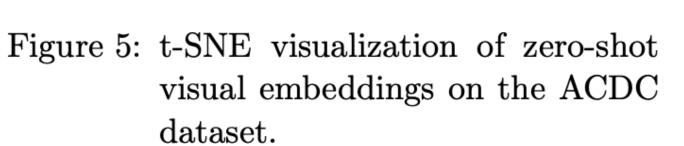


### **Experimental Results for Classification Task on ACDC Dataset**

- Our model are able to generalize to the public ACDC dataset.
- ${ \bullet }$



The visual embeddings obtained from our CMRformer are more categorically separated.



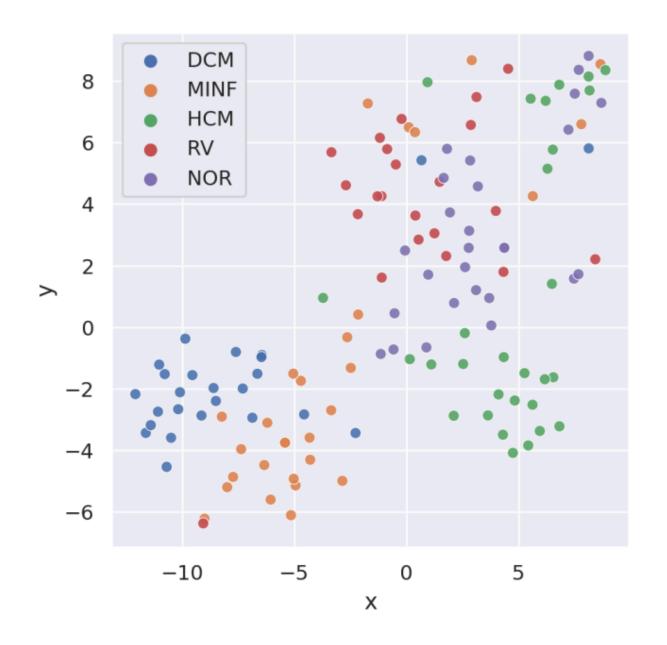


Figure 6: t-SNE visualization of learned visual embedding by CMRformer on ACDC.

University Cleveland Clinic

13

## **Take-aways**

- due to the weak alignment between the images and text.
- the downstream disease classification task.
- and views of CMR images.

Vision-language contrastive learning for Cardiovascular Magnetic Resonance (CMR) is challenging

We proposed **the first multimodal vision-language contrastive learning framework** that enables the acquisition of **CMR representations** accompanied by cardiologist's reports.

We collected a large, single-site CMR dataset consisting of 13,786 studies derived from actual clinical cases. We also collected and labeled a Cardiomyopathies dataset, with 1,939 studies for

We conducted extensive experiments to investigate the retrieval performance of various types

We utilized the visual embeddings acquired from the visual encoder in the CMRformer and showed the **generalizability** of our trained model for **downstream image classification tasks**.

