The Role of Semantic Parsing in Understanding Procedural Text

Hossein Rajaby Faghihi, Parisa Kordjamshidi, Choh Man Teng, James Allen

Michigan State University Florida Institute for Human and Machine Cognition

Procedural Text

Process

Describes a series of action which changes the status of the world from one point to another

Steps

Process can be divided into steps. Each step would contain some actions and some consequences.

World

The world can be defined by a set of entities and their status. Through the process, the existence of these entities and their state would change.

 $\begin{array}{c} 20\\ 23 \end{array}$

Procedural Reasoning

Procedural Reasoning

Is to reason about the process in terms of its effects on the world.

Action

An action is a change to the world. It can be limited to a number of entities.

Consequence

An action can have multiple consequences. The consequence of one action can be different on various entities involved in the action

Benchmark

		Participants							
Paragraph	State number	Water	Light	CO2	Mixture	Sugar			
(Before the process starts)	State 0	Soil	Sun	?	-	-			
Roots absorb water from soil	State 1	Root	Sun ?		-	-			
The water flows to the leaf	State 2	Leaf	Sun	?	-	-			
Light from the sun and CO2 enter the leaf	State 3	Leaf	Leaf	Leaf	-	-			
The water, light, and CO2 combine into a mixture	State 4	-	-	-	Leaf	-			
Mixture forms sugar	State 5	-	-	-	-	Leaf			

Table 1: An example of procedural text and its annotations from the Propara dataset (Dalvi et al., 2018). "-" means entity does not exist. "?" means the location of entity is unknown.

Reasoning over Both Local and Global Context

(context) Step 1: **Magma** rises to the surface, Step 2: **Magma** cools down to form **lava**.

(Semantic Frame)

(Predicate: Form, Affected: Magma, Result: Lava)

(Chain of reasoning)

- 1. Location of Magma at step 1: Surface
- 2. (SRL) Magma is the consumed in making Lava
- 3. (Common-sense) In conversion, the location of the **result** matches the location of the consumed (**affected**) object.
- 4. The location of **Lava** is **Surface**.

Common-sense through ontological features

(context) Step 1: Generator makes electricity.
(Semantic Frame)
(Predicate: makes, Agent: Generator, Result: Electricity)
(Chain of reasoning)

- 1. (Common-sense) Agent and result are co-located
- 2. (Common-sense) The **result** can be **inside** the **Agent**, if agent is a container.
- 3. (Ontology) Generator is a container
- 4. The location of **Electricity** is **Generator**.

 $\begin{array}{c} 20 \\ 23 \end{array}$

Semantic Parsing Source

- We use two sources for semantic parsing of the sentences
 - A shallow parser, that is a deep neural model trained with data, for semantic role labeling (SRL)
 - A symbolic deep semantic parser (TRIPS)

 $\frac{20}{23}$

Semantic Parsing Graphs

- The semantic relationships in each sentence is depicted as a graph.
- The relations between each sentence to another relies on exact-match of entities and candidate locations and their co-references.

 $\begin{array}{c} 20\\ 23 \end{array}$

Propolis uses the Trips parses to directly predict the actions and locations of entities in procedural texts. It consists of three modules:

→ Graph Abstraction:

- Maps the graph to the set of actions Move, Destroy, or Create
- Selects the important roles for each predicate: agent, affected, result, ...
- Generalization over different verbs:
 - Put, Move, place \rightarrow Move
 - Form, Create \rightarrow Create

→ Graph Abstraction:

Sentence: clouds from the sky collide in order to create water droplets.

→ Rule-based Local Decisions:

- Uses the abstracted graph to make local decisions about entities
- Which role of the predicate is the one being created, which is being destroyed and which is being moved
- What is the location of the moved or created object in the semantic frame

Main Predicate	Roles	Decisions
Move	Affected, Agent	The "Affected" is being moved.
Move	Agent	The "Agent" is being moved.
Destroy	Affected	The "Affected" is being destroyed
Create	Affected_Result, Affected	The "Affected_Result" is being created
Create	Affected	The "Affected" is being created
		The "Affected" is being destroyed, and
Change	Affected, Res	the "Res" is being created

Table 1: The rules used to evaluate the effect of actions on various roles of the semantic frame

→ Global Reasoning:

- Make sure that the set of local decisions are correct!
- Action consistency
 - Initial prediction: Move, Create, Exist
 - After applying consistency rules: Move, Exist, Exist
- Location and Action Consistency and hidden actions
 - Initial prediction: None (loc 1, loc 2)
 - After applying consistency rules: Move (loc 1, loc 2) or None (loc 1, loc 1)

Neural Backbones

- We choose two neural backbones for the integration:
 - NCET

Neural Backbones

- We choose two neural backbones for the integration:
 - NCET
 - TSLM (CGLI)

Integration

- Using Graph Attention encoder (GAT) to encode the semantic graphs.
- New token representations:
 - Neural Backbone + GAT
- For CGLI model, the graph is updated with the question:

21

23

High-level evaluations

- Sentence Level
 - Cat1: evaluates whether an entity "e" has been created (destroyed/moved) during the process
 - Cat2: evaluates when an entity "e" is created (destroyed/moved).
 - Cat3: evaluates where "e" is created (destroyed/moved)
- Document Level
 - Inputs
 - Outputs
 - Conversion
 - Moves

Model's Performance

#Row	Models		Ser	tence-lev	Document-level evaluation				
πROw	widdels	Cat1	Cat2	Cat3	Macro-avg	Micro-avg	Precision	Recall	F1
1	ProLocal	62.7	30.5	10.4	34.5	34.0	77.4	22.9	35.3
2	ProGlobal	63	36.4	35.9	45.1	45.4	46.7	52.9	49.4
3	KG-MRC	62.9	40	38.2	47	46.6	64.5	50.7	56.8
4	PROPOLIS(ours)	69.9	37.71	5.6	37.74	36.67	70.9	50.0	58.7
5	NCET (re-implemented)	75.54	45.46	41.6	54.2	54.38	68.4	63.6	66
6	REAL(re-implemented)*	78.9	48.31	41.62	56.29	56.35	67.3	64.9	66.1
7	NCET + SRL(ours)	77.1	46.35	42	55.16	55.32	67.8	65.2	66.5
8	NCET + TRIPS(ours)	77.1	48.12	43.36	56.19	56.32	72.5	65.4	68.8
9	NCET + TRIPS(Edge)(ours)	75.68	47.6	45.71	56.33	56.37	69.9	65.5	67.6
10	NCET + PROPOLIS(ours) ⁺	78.54	48.69	44.26	57.16	57.31	74.6	65.8	69.9
11	DynaPro	72.4	49.3	44.5	55.4	55.5	75.2	58	65.5
12	KOALA	78.5	53.3	41.3	57.7	57.5	77.7	64.4	70.4
13	TSLM	78.81	56.8	40.9	58.83	58.37	68.4	68.9	68.6
14	CGLI	80.3	60.5	48.3	63.0	62.7	74.9	70	72.4
15	CGLI + TRIPS (ours)	80.62	58.94	49.08	62.88	62.68	74.5	68.5	71.4

Decision-Level Evaluation

- The prior metrics do not directly evaluate the model's decisions
- Our new metric directly evaluate the models decision. The decisions are categorized based on their difficulty:
- Categories of decisions: Exists, Does not Exist
 - Local Decision: 🗸 (Location, Local sentence) 🖌 (Entity, Local Sentence)
 - Global Location: X (Location, Local Sentence)
 (Entity, Local Sentence)
 - Global Entity: X (Entity, Local Sentence) 🗸 (Location, Local Sentence)
 - **Global Decision**: **X** (Location, Local Sentence) **X** (Entity, Local Sentence)

20

23

25

- Locally Ambiguous: A local decision where, Multiple verb and actions

	Local	Global Loc	Global Ent		Global Loc and Ent	Ambiguous	
	Both	Both	Actions Locations		Both	Actions	
Train	885	367	438	340	114	593	
Dev	116	44	66	3	9	76	
Tests	105	61	98	71	18	110	

Model's Performance

Model	Local		Global Loc			Global Ent			Global Loc and Ent			Amb ⁺	
WIOUCI	A	L	Both	A	L	Both	A	L	Both	Α	L	Both	Α
KOALA	74.3	65.7	59.0	86.9	24.6	22.9	1.0	7.0	0.0	5.6	11.1	0	73.63
PROPOLIS	55.2	19.0	19.0	63.9	1.6	1.6	0.0	9.9	0.0	0.0	0.0	0.0	52.7
NCET	69.5	62.8	60.0	70.5	36.1	29.5	3.1	5.6	0.0	0.0	0.0	0.0	57.2
NCET + SRL	68.6	65.7	61.9	77.0	36.1	31.1	10.2	5.6	0.0	5.5	5.5	0.0	62.7
NCET + TRIPS	71.4	67.6	63.8	75.4	42.6	36.1	10.2	9.9	2.8	5.5	11.1	0.0	63.6
NCET + PROPOLIS	71.4	64.8	61.9	83.6	36.1	34.4	3.1	7.0	0.0	5.5	5.5	0.0	70.9
CGLI	65.7	62.9	54.3	75.4	59.0	50.8	19.4	19.7	11.3	22.2	27.8	11.1	70.0
CGLI + TRIPS	75.2	70.5	61.9	80.3	60.6	52.2	17.3	22.5	12.7	27.8	27.8	16.7	74.5

Conclusion

- We Proposed new evaluation metrics for a procedural reasoning benchmark, Propara:
 - Based on the difficulty of the low-level decisions.
 - Hardest decision is where the entity and location do not appear in the local context. Decisions over global entity is harder than global location.
- Symbolic Procedural reasoning → outperforms neural models; Especially when pre-trained language models are not used!
- Integration with SOTA models \rightarrow helpful in most of the metrics.
- Integration \rightarrow complimentary effect on the original backbone.
 - If the baseline performed better on local decision, the improvement is higher on global decisions and vice-versa.

 $\frac{20}{23}$

Thank you!

rajabyfa@msu.edu