Unlocking the Potential of Similarity Matching: Scalability, Supervision, and Pre-training

FLATIRON INSTITUTE Center for Computational Biology

Yanis Bahroun ¹ Shagesh Sridharan ² Atithi Acharya ² Dmitri B. Chklovskii ^{1,3} Anirvan M. Sengupta ^{1,2}

¹Flatiron Institute ²Rutgers University ³NYU Neuroscience Institute

Similarity Matching

Similarity Matching algorithms [1, 3] exhibit **locality**, **online trainability**, and **bio-plausibility**.

Nonnegative Similarity Matching (NSM)

The objective function considered in [2] is

$$\hat{\mathbf{Z}} = \underset{\mathbf{Z} \in \mathbb{R}^{m \times T}_{+}}{\operatorname{arg min}} \|\mathbf{X}^{\top}\mathbf{X} - \mathbf{Z}^{\top}\mathbf{Z}\|_{F}^{2}.$$
 (1)

- $\mathbf{X} \in \mathbb{R}^{n \times T}$ is the input matrix
- $\mathbf{Z} \in \mathbb{R}^{m \times T}_+$ is the encoding matrix

NSM as a min-max objective function

Introduce auxiliary variables, \mathbf{W} and \mathbf{M} [4]: $\min_{\mathbf{Z} \in \mathbb{R}^{m \times T}_{+}, \mathbf{W}} \max_{\mathbf{M}} -4 \operatorname{Tr}(\mathbf{X}^{\top} \mathbf{W}^{\top} \mathbf{Z} - \frac{1}{2} \mathbf{Z}^{\top} \mathbf{M}^{\top} \mathbf{Z})$ $+ 2 \operatorname{Tr}(\mathbf{W}^{\top} \mathbf{W}) - \operatorname{Tr}(\mathbf{M}^{\top} \mathbf{M}). \quad (2)$

Online algorithm and neural implementation

Contributions

Our contributions are the development of a scalable convolutional NSM implementation using PyTorch as a localized learning alternative to backpropagation. We introduce a localized supervised objective and explore NSM-based pre-training for models such as LeNet. These models enhance overall performance and facilitate efficient learning processes.

$$Z_{ijk} = \left[(W \otimes X)_{ijk} + (V \otimes Y)_{ijk} - Z_{ij\nu}M_{\nu k} \right]_{+}$$

Online Supervised SM Algorithm

Supervised Similarity Matching (S²M)

For $k \in \{1, L\}$ where L is the number of layers, we define the supervised SM as follows,

$$\hat{\mathbf{Z}}_{k} = \underset{\mathbf{Z}_{k}\geq0}{\operatorname{arg\ min\ }} \left\| \left[\hat{\mathbf{Z}}_{k-1}^{\top} \hat{\mathbf{Z}}_{k-1} + \alpha_{k} \mathbf{Y}^{\top} \mathbf{Y} \right] - \mathbf{Z}_{k}^{\top} \mathbf{Z}_{k} \right\|_{F}^{2}$$
(5)

• $\mathbf{Y} \in \mathbb{R}^{c \times T}$ is the matrix of labels (one-hot) • α_k controls label matrix influence

We absorb α_k into $\mathbf{Y}^{\top}\mathbf{Y}$ for simplicity.

S^2M as a min-max objective function

We rewrite (5) using auxiliary variables \mathbf{W}_k , \mathbf{M}_k , and \mathbf{V}_k as

 $\max_{\mathbf{M}_{k}} \min_{\mathbf{W}_{k},\mathbf{V}_{k},\mathbf{Z}_{k} \in \mathbb{R}^{m_{k} \times T}_{+}} l(\mathbf{Z}_{k-1},\mathbf{Z}_{k},\mathbf{Y},\mathbf{W}_{k},\mathbf{M}_{k},\mathbf{V}_{k}).$

 $1(\mathbf{7} \quad \mathbf{7} \quad \mathbf{V} \quad \mathbf{N} \quad \mathbf{N} \quad \mathbf{V})$

Gradient-descent ascent of Eq. (2) gives, **Neural dynamics:**

$$\frac{d\mathbf{Z}(\gamma)}{d\gamma} = [\mathbf{W}\mathbf{X} - \mathbf{M}\mathbf{Z}(\gamma)]_{+} \quad , \tag{3}$$

Synaptic learning rules:

$$\Delta \mathbf{W} = \mathbf{X} \hat{\mathbf{Z}}^{\top} , \quad \Delta \mathbf{M} = -\hat{\mathbf{Z}} \hat{\mathbf{Z}}^{\top}.$$
 (4)

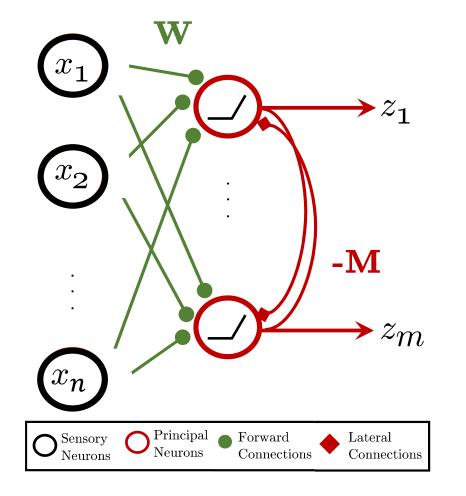


Figure 1: Single-layer NN performing online NSM [2]

References

- [1] Lipshutz, D., Bahroun, Y., Golkar, S., Sengupta, A.M., Chklovskii, D.B.: A normative framework for deriving neural networks with multi-compartmental neurons and non-hebbian plasticity. arXiv preprint arXiv:2302.10051 (2023)
- [2] Pehlevan, C., Chklovskii, D.B.: A Hebbian/anti-Hebbian network derived from online non-negative matrix factorization can cluster and discover sparse features. In: 2014 48th Asilomar Conference. pp. 769--775. IEEE (2014)
- [3] Pehlevan, C., Chklovskii, D.B.: Neuroscience-inspired online

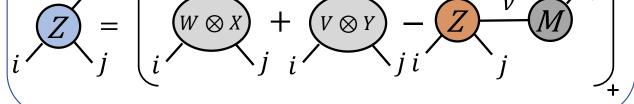


Figure 2: Graphical notation of tensor operations

Algorithm	Conventional	CPU	GPU
10k images	2399s	93.85s	13.54s

Table 1: Training times for processing 10,000 images.

Pre-training LeNet with S^{2}M

Step 1. Pre-training.

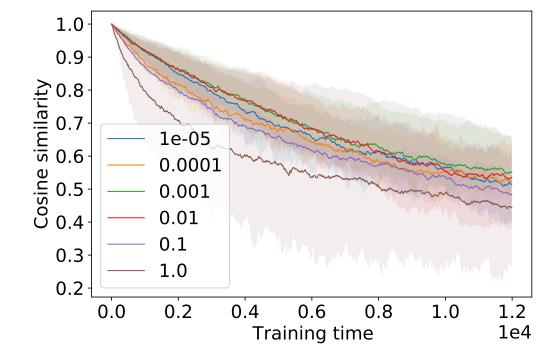
- Initialize a single-layer S²M network with the same number of neurons as filters in LeNet layers.
- Train the S²M by executing neural dynamics.
- ${\ }$ Initialize the LeNet layer with the learned weights ${\ }{\ }{\ }{\ }{\ }$
- Initialize the other layers of LeNet randomly.

Step 2. Fine-tuning with BP.

 Perform supervised fine-tuning of the LeNet layer through BP for all layers.

Step 3. Compare rotation during BP for varying supervision.

• Filters are most stable and retain initial orientations at $\alpha_1 = 10^{-3}$.



$$l(\mathbf{Z}_{k-1}, \mathbf{Z}_k, \mathbf{Y}, \mathbf{W}_k, \mathbf{M}_k, \mathbf{V}_k) = -4 \operatorname{Tr}(\left[\mathbf{Z}_{k-1}^{\top} \mathbf{W}_k^{\top} + \mathbf{Y}^{\top} \mathbf{V}_k^{\top} - \frac{1}{2} \mathbf{Z}_k^{\top} \mathbf{M}_k^{\top}\right] \mathbf{Z}_k) + 2 \operatorname{Tr}(\mathbf{W}_k^{\top} \mathbf{W}_k + \mathbf{V}_k^{\top} \mathbf{V}_k) - \operatorname{Tr}(\mathbf{M}_k^{\top} \mathbf{M}_k) .$$
(6)

Online algorithm and neural implementation

Gradient-descent ascent on (6) gives:

Neural dynamics:

$$rac{d\mathbf{Z}_k(\gamma)}{d\gamma} = [\mathbf{W}_k \hat{\mathbf{Z}}_{k-1} + \mathbf{V}_k \mathbf{Y} - \mathbf{M}_k \mathbf{Z}_k(\gamma)]_+ .$$

We identify the auxiliary variables

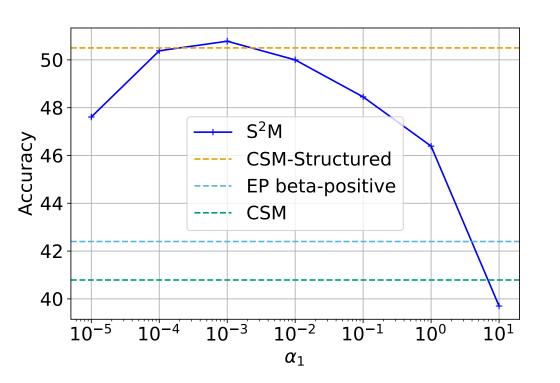
- \mathbf{W}_k with feedforward connections
- \mathbf{M}_k with lateral connections
- \mathbf{V}_k with label-encoder connections

Synaptic learning rules:

 $\Delta \mathbf{V}_k = \mathbf{Y} \hat{\mathbf{Z}}_k, \Delta \mathbf{W}_k = \hat{\mathbf{Z}}_{k-1} \hat{\mathbf{Z}}_k, \Delta \mathbf{M}_k = -\hat{\mathbf{Z}}_k \hat{\mathbf{Z}}_k^{\top}.$

Numerical Evaluation

- We test for different levels of supervision.
- We compare with Contrastive Similarity Matching and Equilibrium Propagation [5]
- We observe maximum validation accuracy for S²M at $\alpha_1 = 10^{-3}$.



unsupervised learning algorithms: Artificial neural networks. IEEE Signal Processing Magazine 36(6), 88--96 (2019) [4] Pehlevan, C., Sengupta, A.M., Chklovskii, D.B.: Why do

similarity matching objectives lead to hebbian/anti-hebbian networks? Neural computation 30(1), 84--124 (2017)

 [5] Qin, S., Mudur, N., Pehlevan, C.: Contrastive similarity matching for supervised learning. Neural computation 33(5), 1300--1328 (2021)

Figure 3: Evaluation of LeNet Pre-training using S²M (6 neurons)

Figure 4: Evaluation of S^2M (10 neurons) on CIFAR-10