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Similarity Matching

Similarity Matching algorithms [1, 3] exhibit lo-
cality, online trainability, and bio-plausibility.

Nonnegative Similarity Matching (NSM)

The objective function considered in [2] is
7 = arg min | XX — Z"Z||%. (1)

ZcR7

= X € R™! s the input matrix
= Z € R is the encoding matrix

NSM as a min-max objective function

Introduce auxiliary variables, W and M [4]:

min  max —4Tr(X'W'Z -1Z"M'Z)
ZcR™TwW M
+2Tr(W'W) — Tr(M'M). (2)

Online algorithm and neural implementation

Gradient-descent ascent of Eq. (2) gives,
Neural dynamics:
20) = [WX — MZ(7)]; . (3)

dry
Synaptic learning rules:
AW =XZ" . AM=-Z77". (4)
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Figure 1: Single-layer NN performing online NSM [2]
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Contributions

Our contributions are the development of
a scalable convolutional NSM implemen-
tation using PyTorch as a localized learn-
ing alternative to backpropagation. We in-
troduce a localized supervised objective
and explore NSM-based pre-training for
models such as LeNet. These models en-
hance overall performance and facilitate
efficient learning processes.
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Figure 2: Graphical notation of tensor operations
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Table 1: Training times for processing 10,000 images.

Pre-training LeNet with S°M
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Online Supervised SM Algorithm
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Step 1. Pre-training.

= [nitialize a single-layer S?°M network with the same
number of neurons as filters in LeNet layers.

= Train the S*M by executing neural dynamics.
= |[nitialize the LeNet layer with the learned weights W.
= |nitialize the other layers of LeNet randomly.

Step 2. Fine-tuning with BP.

= Perform supervised fine-tuning of the LeNet layer through
BP for all layers.

Step 3. Compare rotation during BP for varying supervision.

= Filters are most stable and retain initial orientations at
] = 1073,
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Figure 3: Evaluation of LeNet Pre-training using S?M (6 neurons)

Supervised Similarity Matching (S°M)

For k € {1, L} where L is the number of layers,
we define the supervised SM as follows,
2

Z] 2y + Y Y| - ZZZkH

(5)
= Y € R s the matrix of labels (one-hot)

= o controls [abel matrix influence

Z;. = arg min ‘

Z;.>0 F

We absorb a; into Y'Y for simplicity.

S°M as a min-max objective function

We rewrite (5) using auxiliary variables W ., M,
and V. as

Z<Zk—17 Zk) Y7 Wk) Mk) Vk)

max min
My, Wk,Vk,ZkERTkXT

Z(Z/ﬂ—la Z/Ca Y7 Wk) Mka Vk) —
—ATH(|Z W] + YTV] = 1Z]M]| 7))
+2Tr(W. W, + V. V) —Tr(MM;) . (6)

Online algorithm and neural implementation

Gradient-descent ascent on (6) gives:
Neural dynamics:
2:0) — (W Zip—y + VEY — MiZ()) -

We identify the auxiliary variables

= W, with feedforward connections
= M, with lateral connections

= V. with label-encoder connections

Synaptic learning rules:
AV =YZ,, AW, =212y, AMy, = -7, 7.

Numerical Evaluation

= We test for different levels of supervision.

= We compare with Contrastive Similarity
Matching and Equilibrium Propagation [5]

= We observe maximum validation accuracy
for S°M at ay = 1073,
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Figure 4: Evaluation of $?M (10 neurons) on CIFAR-10



