Online Backfilling with No Regret for Large-Scale Image Retrieval

Seonguk Seo¹ Gokhan Uzunbas² Bohyung Han¹ Sara Cao² Joena Zhang² Taipeng Tian² Ser-Nam Lim²

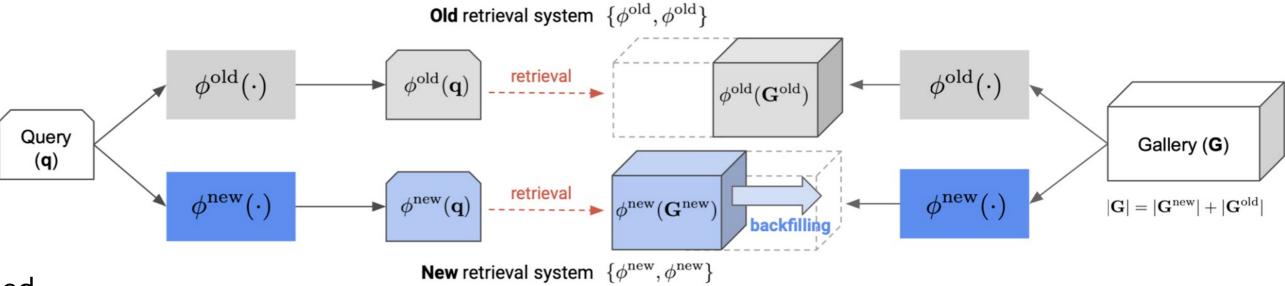
Computer Vision Lab Seoul National University ² COMeta

Introduction

- [Motivation] Backward-compatible training avoids the need for updating all gallery images during model upgrade, but it <u>achieves feature compatibility at the expense of feature</u> discriminability, resulting in sub-optimal performance.
- **[Contribution]** To resolve this compatibility-discriminability dilemma, we relax the backfill-free constraint and propose a novel online backfilling algorithm to alleviate the bottleneck.

Preliminaries

• Image retrieval evaluates the retrieval accuracy as



Rank Merge

• Assume that the first M out of a total of N images are backfilled. We can first conduct image retrieval using the individual retrieval systems independently as

$$\mathbf{g}_m = \operatorname*{arg\,min}_{\mathbf{g}_i \in \mathbf{G}^{\mathrm{old}}} \, \operatorname{dist} \left(\phi^{\mathrm{old}}(\mathbf{q}), \phi^{\mathrm{old}}(\mathbf{g}_i) \right), \ \mathbf{g}_n = \operatorname*{arg\,min}_{\mathbf{g}_j \in \mathbf{G}^{\mathrm{new}}} \, \operatorname{dist} \left(\phi^{\mathrm{new}}(\mathbf{q}), \phi^{\mathrm{new}}(\mathbf{g}_j) \right)$$

and finally select \mathbf{g}_m if $\operatorname{dist}(\phi^{\operatorname{old}}(\mathbf{q}), \phi^{\operatorname{old}}(\mathbf{g}_m)) < \operatorname{dist}(\phi^{\operatorname{new}}(\mathbf{q}), \phi^{\operatorname{new}}(\mathbf{g}_n))$ and \mathbf{g}_n otherwise.

• The retrieval performance after rank merge during backfilling is given by

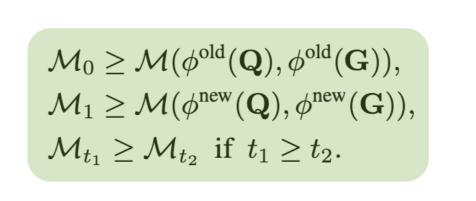
 $\mathcal{M}(\phi(\mathbf{Q}),\phi(\mathbf{G}))$

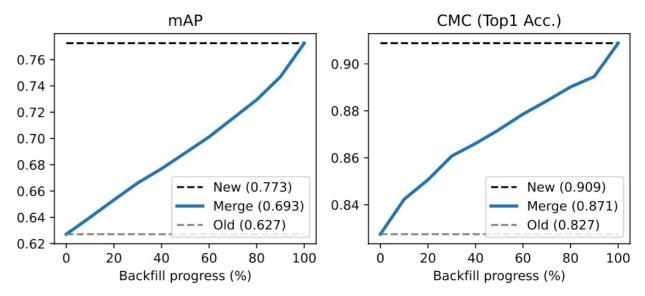
 Backward-compatible training aim to learn a new model while its feature space being compatible to those of old model.
Backward compatibility is achieved when

 $\mathcal{M}(\phi^{\mathsf{new}}(\mathbf{Q}),\phi^{\mathsf{old}}(\mathbf{G})) > \mathcal{M}(\phi^{\mathsf{old}}(\mathbf{Q}),\phi^{\mathsf{old}}(\mathbf{G}))$

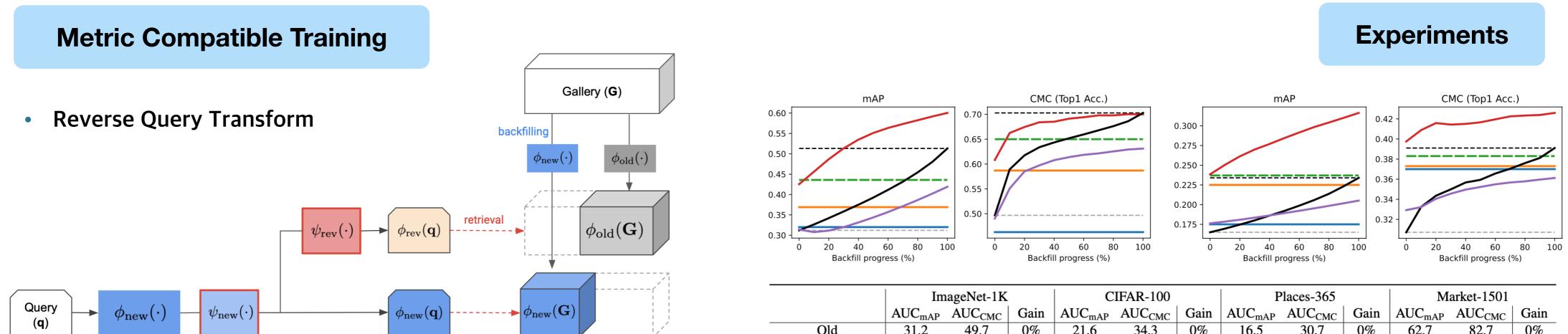
$$\mathcal{M}_t := \mathcal{M}(\{\phi^{\operatorname{old}}(\mathbf{Q}), \phi^{\operatorname{new}}(\mathbf{Q})\}, \{\phi^{\operatorname{old}}(\mathbf{G}_t^{\operatorname{old}}), \phi^{\operatorname{new}}(\mathbf{G}_t^{\operatorname{new}})\}),$$

and should satisfy:

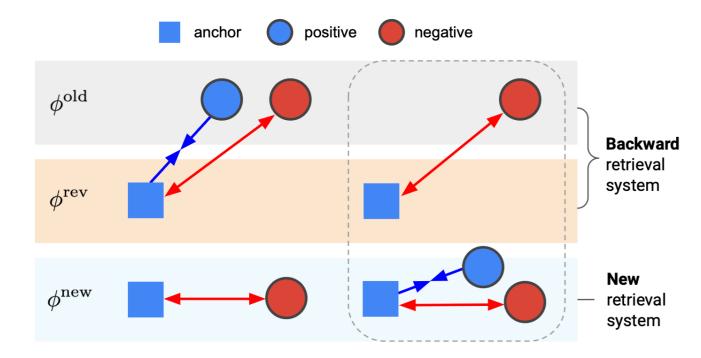




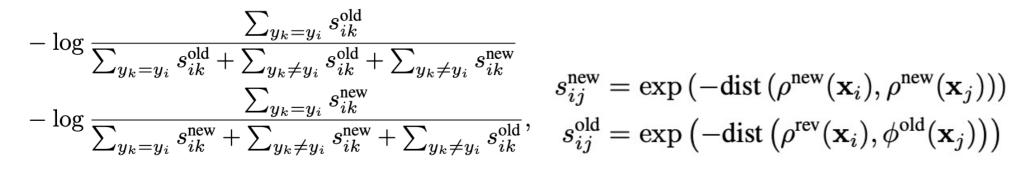
Backward compatible training leads to suboptimal solutions in principle. Online backfilling can address the compatibility-discriminability dilemma effectively.



• Metric Compatible Contrastive Learning

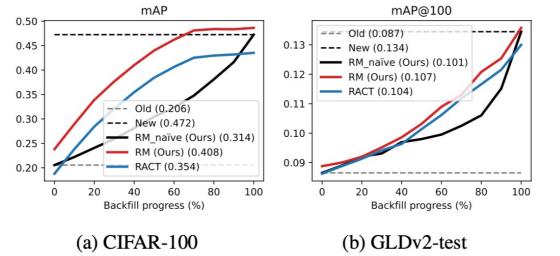


 $\mathcal{L}_{ ext{MCL}}(\mathbf{x}_i, y_i) =$

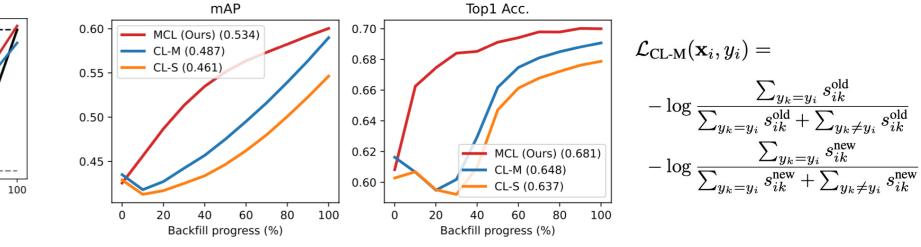


	AUC _{mAP}	AUC _{CMC}	Gain									
Old	31.2	49.7	0%	21.6	34.3	0%	16.5	30.7	0%	62.7	82.7	0%
New	51.3	70.3	100%	47.4	62.6	100%	23.4	39.1	100%	77.3	90.9	100%
RM _{naïve} (Ours)	40.0	63.9	44%	30.8	49.1	36%	19.5	35.8	43%	69.2	87.0	45%
BCT	32.0	46.3	4%	26.4	43.5	19%	17.5	37.0	14%	66.6	84.3	27%
FCT	36.9	58.7	28%	27.1	49.4	21%	22.5	37.3	87%	66.4	84.2	25%
FCT (w/ side-info)	43.6	65.0	62%	37.0	53.9	60%	23.7	38.3	104%	66.4	84.4	25%
BiCT	35.1	59.7	19%	29.0	48.3	29%	19.0	34.9	36%	65.0	82.4	16%
RM (Ours)	53.4	68.1	110%	41.4	60.7	78%	28.2	41.7	170%	70.7	87.6	55%

Open-class setting







Selected References

[BCT] Shen et al., "Towards backward-compatible representation learning", CVPR (2020) **[FCT]** Ramanujan et al., "Forward compatible training for large-scale embedding retrieval systems", CVPR (2022)