Learning Recurrent Models with Temporally Local Rules

Azwar Abdulsalam (abdulsal@purdue.edu) Joseph G. Makin (jgmakin@purdue.edu)

Elmore Family School of Electrical and Computer Engineering, Purdue University

Abstract

- Fitting generative models to sequential data typically requires backpropthrough-time
- BPTT is biologically implausible and computationally expensive
- We investigate an alternative: require the generative model to learn the joint distribution over current and previous states, rather than merely the forward-transition probabilities
 [2, 3]
- Two architectures: **rEFH**, **rVAE**

Models	Results	
$ \hat{p}(\hat{\boldsymbol{u}}_{t-1} \hat{\boldsymbol{x}}_t;\boldsymbol{\theta}) = \operatorname{Bern}\left(\sigma(\mathbf{W}_u^{T}\hat{\boldsymbol{x}}_t + \boldsymbol{b}_u)\right) $ $ \overbrace{\boldsymbol{v}_{t-1} \cdots \boldsymbol{v}_t}^{\left(\hat{\boldsymbol{x}}_t\right)} \hat{p}(\hat{\boldsymbol{x}}_t \hat{\boldsymbol{u}}_{t-1}, \hat{\boldsymbol{y}}_t;\boldsymbol{\theta}) = \operatorname{Bern}\left(\sigma(\mathbf{W}_u\hat{\boldsymbol{u}}_{t-1} + \mathbf{W}_y\hat{\boldsymbol{y}}_t + \boldsymbol{b}_x)\right) $ $ \overbrace{\boldsymbol{v}_t}^{\left(\hat{\boldsymbol{y}}_t\right)} \hat{p}(\hat{\boldsymbol{y}}_t \hat{\boldsymbol{x}}_t;\boldsymbol{\theta}) = \begin{cases} \operatorname{Bern}\left(\sigma(\mathbf{W}_y^{T}\hat{\boldsymbol{x}}_t + \boldsymbol{b}_y)\right) \\ \operatorname{Pois}\left(\exp(\mathbf{W}_y^{T}\hat{\boldsymbol{x}}_t + \boldsymbol{b}_y)\right) \end{cases} $	Quantitative Results	
	Model	MSE
	ORDER 0	12×10^{-4}
	TVAE	9.5×10^{-4}
	TRBM^*	6.0×10^{-4}
	KF-1	5.8×10^{-4}
$\frac{\mathrm{d}\mathcal{L}_{rEFH}}{\mathrm{d}\boldsymbol{\theta}} = \sum_{t=1}^{T} \frac{\mathrm{d}H_{p\hat{p}}[\boldsymbol{U}_{t-1}, \boldsymbol{Y}_{t}; \boldsymbol{\theta}]}{\mathrm{d}\boldsymbol{\theta}} \approx \sum_{t=1}^{T} \mathbb{E}_{\hat{\boldsymbol{X}}_{t}, \boldsymbol{Y}_{t}, \boldsymbol{U}_{t-1}} \left[\frac{\mathrm{d}E}{\mathrm{d}\boldsymbol{\theta}}\right] - \mathbb{E}_{\hat{\boldsymbol{X}}_{t}, \hat{\boldsymbol{Y}}_{t}, \hat{\boldsymbol{U}}_{t-1}} \left[\frac{\mathrm{d}E}{\mathrm{d}\boldsymbol{\theta}}\right]$	rVAE	5.3×10^{-4}
	rEFH	3.3×10^{-4}
	RTRBM*	3.1×10^{-4}
rEFH	KF-2	2.2×10^{-4}
	Mean squared errors (MS information on the	E) for recovery of position e PPC experiment.

 $\check{p}(\check{\boldsymbol{x}}_t|\boldsymbol{u}_{t-1},\boldsymbol{y}_t;\boldsymbol{\phi}) =$

recognition model

• On toy datasets the procedure has the same effect as including BPTT

Experiments

LTI system + PPC [1] neuron ID 10 angle (rad) 0.50 -0.520 30 40 50 60 7080 10 90 0 time (samples) $p(\boldsymbol{y}_t | \boldsymbol{z}_t) = \prod \mathsf{Pois}(y_t^i | g_t f_i(z_t^1))$ $p(\boldsymbol{z}_{t+1}|\boldsymbol{z}_t) = \mathcal{N}(\mathbf{A}\boldsymbol{z}_t, \boldsymbol{\Sigma}_{\hat{x}})$ mean spikes/bin 1510 $-1 -0.8 - 0.6 - 0.4 - 0.2 \ 0 \ 0.2 \ 0.4 \ 0.6 \ 0.8$ angle (rad)

- A crude biophysical model of neurons reporting a stimulus.
- Second-order (oscillatory!) dynamics, but only position is "reported" by the neurons.

$$\left| \begin{array}{c} \hat{\mathbf{y}}_{t} \\ T \end{array}
ight| \hat{p}(\hat{y}_{t} | \hat{x}_{t}; \boldsymbol{\theta}) = \mathcal{N} \Big(\boldsymbol{\mu}_{\hat{y}}(\hat{x}_{t}, \boldsymbol{\theta}), \ \sigma_{\hat{y}}^{2} \mathbf{I} \Big)$$

generative model

$$\frac{\mathcal{L}_{\mathsf{rVAE}}}{\mathsf{d}\boldsymbol{\theta}^{\mathsf{T}}} = \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}^{\mathsf{T}}} \sum_{t=1}^{T} \mathbb{E}_{\check{\boldsymbol{X}}_{t}, \boldsymbol{U}_{t-1}, \boldsymbol{Y}_{t}} \left[\log \check{p}(\check{\boldsymbol{X}}_{t} | \boldsymbol{U}_{t-1}, \boldsymbol{Y}_{t}; \boldsymbol{\phi}) - \log \hat{p}(\check{\boldsymbol{X}}_{t}, \boldsymbol{U}_{t-1}, \boldsymbol{Y}_{t}; \boldsymbol{\theta}) \right]$$

$$\approx \sum_{t=1}^{T} \mathbb{E}_{\check{\boldsymbol{X}}_{t}, \boldsymbol{U}_{t-1}, \boldsymbol{Y}_{t}} \left[\frac{\mathrm{dlog}\,\check{p}(\check{\boldsymbol{X}}_{t} | \boldsymbol{U}_{t-1}, \boldsymbol{Y}_{t}; \boldsymbol{\phi})}{\mathrm{d}\boldsymbol{\theta}^{\mathsf{T}}} - \frac{\mathrm{dlog}\,\hat{p}(\check{\boldsymbol{X}}_{t}, \boldsymbol{U}_{t-1}, \boldsymbol{Y}_{t}; \boldsymbol{\theta})}{\mathrm{d}\boldsymbol{\theta}^{\mathsf{T}}} \right]$$

$$\mathbf{rVAE}$$

Letting the derivative pass through the expectations

- ignores the dependence of U_{t-1} on the parameters θ .
- amounts to discarding BPTT

Rationale

Model requirements

1) Generative model with latent variables, \hat{X} 2) Latent variables inferable: $\hat{p}(\hat{x}_t | u_{t-1}, y_t; \theta)$ or $\check{p}(\check{x}_t | u_{t-1}, y_t; \phi)$ 3) compression: dim $(\hat{X}) < \dim(Y)$

Candidate generative models

×GAN (cannot infer latent variables) ×Energy-Based Models (no latent variables)

Model	MSE
ORDER 0	0.0120
TRBM	0.0124
REFH	0.0067
RTRBM	0.0059

Mean squared errors (MSE) for bouncing-ball one-step predictions (w/clamped Gibbs sampling)

Qualitative Results

· · · · · · · · · · · · · · · · · ·

Bouncing-ball frame sequence generated by rVAE.

MovingMNIST frame sequence generated by rVAE.

Conclusions

- Learning joint over current and previous states seems to obviate BPTT
- rVAE learns 2nd-order dynamics from position observations, but worse than rEFH

- Observation model is *nonlinear*, but a closed-form solution is still available (KF). This allows us to determine what order model was learned.
- What algorithms can learn **2nd**-order dynamics?

× Diffusion
$$(\dim(\hat{X}) = \dim(Y))$$

× Flow $(\dim(\hat{X}) = \dim(Y))$
✓ Variational Auto-Encoder
✓ Exponential-Family Harmonium

• The procedure, though intuitive, requires a mathematical basis and scaling to handle more challenging datasets.

Bouncing balls [4]

- Video sequences of 3 balls bouncing off each other and walls with complete energy conservation
- constant velocities (2nd-order, linear) + collisions (nonlinear)

Moving MNIST [4]

- Video sequences of moving MNIST digits bouncing off walls and passing through one another
- constant velocities (2nd-order, linear) + overlap (nonlinear) + occlusions (nonlinear)

Architecture/Training

• The rVAE generative and recognition models make different independence statements. We try to minimize the discrepancy by concatenating U_{t-1} with Y_t only after encoding:

• All models trained with stochastic gradient descent and AdaM optimization. The learning rate was configured to 1e-4, with β_1 and β_2 values set to 0.9 and 0.999, respectively.

References

- W. J. Ma, J. M. Beck, P. E. Latham, and A. Pouget. Bayesian Inference with Probabilistic Population Codes. *Nature Neuroscience*, 9(11):1423–1438, 2006.
- [2] J. G. Makin, B. K. Dichter, and P. N. Sabes. Learning to Estimate Dynamical State with Probabilistic Population Codes. *PLoS Computational Biology*, 11(11):1–28, 2015.
- [3] J. G. Makin, B. K. Dichter, and P. N. Sabes. Recurrent Exponential-Family Harmoniums without Backprop-Through-Time. https://arxiv.org/abs/1605.05799, 2016.
- [4] I. Sutskever. *Training Recurrent Neural Networks*. PhD thesis, University of Toronto, 2013.