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Abstract
• Fitting generative models to sequen-

tial data typically requires backprop-
through-time

• BPTT is biologically implausible and
computationally expensive

• We investigate an alternative: require
the generative model to learn the
joint distribution over current and
previous states, rather than merely
the forward-transition probabilities
[2, 3]

• Two architectures: rEFH, rVAE
• On toy datasets the procedure has the

same effect as including BPTT

Experiments

LTI system + PPC [1]
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• A crude biophysical model of neurons reporting a
stimulus.

• Second-order (oscillatory!) dynamics, but only po-
sition is “reported” by the neurons.

• Observation model is nonlinear, but a closed-form
solution is still available (KF). This allows us to
determine what order model was learned.

• What algorithms can learn 2nd-order dynamics?

Bouncing balls [4]

• Video sequences of 3 balls bouncing off each other
and walls with complete energy conservation

• constant velocities (2nd-order, linear) + collisions
(nonlinear)

Moving MNIST [4]

• Video sequences of moving mnist digits bouncing
off walls and passing through one another

• constant velocities (2nd-order, linear) + overlap
(nonlinear) + occlusions (nonlinear)

Models
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x̂I)

X̂t p̂(x̂t;θ) = N (0, I)
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generative model

Ut−1 X̌t
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recognition model
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Letting the derivative pass through the expectations
• ignores the dependence of Ut−1 on the parameters θ.
• amounts to discarding BPTT

Rationale

Model requirements
1) Generative model with latent variables, X̂
2) Latent variables inferable: p̂(x̂t|ut−1,yt;θ) or p̌(x̌t|ut−1,yt;ϕ)
3) compression: dim

(
X̂

)
< dim(Y )

Candidate generative models
×GAN (cannot infer latent variables)
×Energy-Based Models (no latent variables)
×Diffusion (dim

(
X̂

)
= dim(Y ))

×Flow (dim
(
X̂

)
= dim(Y ))

✓ Variational Auto-Encoder
✓ Exponential-Family Harmonium

Architecture/Training

• The rVAE generative and recognition models make different in-
dependence statements. We try to minimize the discrepancy by
concatenating Ut−1 with Yt only after encoding:

yt

ut−1

encoder +
concat

projection

νx̌

Υx̌

ut

• All models trained with stochastic gradient descent and AdaM
optimization. The learning rate was configured to 1e-4, with β1
and β2 values set to 0.9 and 0.999, respectively.

Results

Quantitative Results
Model MSE
order 0 12 × 10−4

TVAE 9.5 × 10−4

TRBM* 6.0 × 10−4

KF-1 5.8 × 10−4

rVAE 5.3 × 10−4

rEFH 3.3 × 10−4

RTRBM* 3.1 × 10−4

KF-2 2.2 × 10−4

Mean squared errors (MSE) for recovery of position
information on the PPC experiment.

Model MSE
order 0 0.0120
TRBM 0.0124
rEFH 0.0067
RTRBM 0.0059

Mean squared errors (MSE) for bouncing-ball
one-step predictions (w/clamped Gibbs sampling)

Qualitative Results

Bouncing-ball frame sequence generated by rVAE.

MovingMNIST frame sequence generated by rVAE.

Conclusions
• Learning joint over current

and previous states seems to
obviate BPTT

• rVAE learns 2nd-order dynam-
ics from position observations,
but worse than rEFH

• The procedure, though intu-
itive, requires a mathemati-
cal basis and scaling to handle
more challenging datasets.
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