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xnet(t) = Winu(t) + brec + Ŵx(t− 1)

x(t) = (1− a)x(t− 1) + af (gxnet(t) + b)

y(t) = Wx(t) + bout

%TR
WESAD HHAR

w/o FedIP w/ FedIP w/o FedIP w/ FedIP

25% 72.09± 0.59 78.68± 0.12 57.08± 3.11 69.83± 0.64

50% 72.04± 1.03 77.43± 0.19 63.88 ± 6.02 57.74 ± 0.19

75% 76.53± 1.08 77.97± 0.41 71.09 ± 0.56 71.08 ± 0.69

100% 77.78± 0.58 79.42± 0.39 70.29± 0.99 71.38 ± 0.43

%TR
WESAD HHAR

Naı̈ve Replay Joint Naı̈ve Replay Joint

25% 27.32± 10.86 79.23 ± 0.44 78.75± 0.67 34.85± 3.08 51.16± 5.88 69.44± 0.38

50% 30.60± 7.51 77.49± 0.89 75.95± 1.07 30.16± 2.10 43.77± 1.50 60.85± 4.37

75% 51.50± 4.10 77.04± 0.89 78.17± 0.54 28.62± 0.93 59.83± 0.88 71.14± 0.84

100% 50.80± 1.50 77.46± 1.31 79.51± 0.35 30.30± 0.43 62.28± 0.54 71.22± 0.32

EXPERIMENTS

LOCALIZING PLASTICITY ON SPACE…

Maximize the information gain via Maximum Entropy

• 𝑡𝑎𝑛ℎ activation à Gaussian as ME distribution

L(θ;µ,σ) = DKL(q̃ || Nµ,σ)
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Pervasive environments  à massive distribution of resource-
constrained devices collecting private temporal data over time
Learn a global model which generalizes over space and time
by localizing the learning process on these dimensions

ECHO STATE NETWORKS

Echo State Networks with Intrinsic Plasticity
Federated Averaging to deal with local private datasets
Replay strategies to deal with streaming data

W = YS
T (SST + λI)−1

• Extended for learning over space and time with 
an exact approach
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Only 2𝑁 parameters exchanged per round (N = number of reservoir units)

with θ = {g,b}
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… AND TIME

SETUP FEDERATED AND STATIONARY FEDERATED AND NON-STATIONARY
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• Assessed on two HAR 
benchmarks splitted as below

• Baselines:  
• No FedIP on the stationary 

setting; 
• Naïve and Joint strategies on 

the non-stationary setting

• Repeated with different 
percentages of training clients

• Measured accuracy and 
activation density

ü FedIP outperforms baseline
ü Regularizes with ≤ 50% and improves 

information gain with 75-100%
ü Does not suffer from averaging 

approximation

ü Results consistent with the stationary setting
ü Replay strategy consistently mitigates forgetting
ü Good forward transfer

CONCLUSIONS
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• Extended ESNs’ 
Intrinsic Plasticity 
towards a learning 
approach localized 
on space and time

• Proposed two 
communication-
efficient algorithms 
for stationary and 
non-stationary data

• Both approaches do 
not suffer from the 
approximation and 
lead to good 
generalization 

Combine the tools in a unified framework which accounts 
for uncertainty from distribution over space and time

𝑾!" and *𝑾 are randomized and fixed

RESERVOIR ADAPTATION: INTRINSIC PLASTICITY READOUT LEARNING: RIDGE REGRESSION

Convex combination of clients models, accounts for heterogeneity

FEDERATED INTRINSIC PLASTICITY
1. Broadcast 2. Local IP 3. FedAvg Aggregation

Accounts for evolving heterogeneity

FEDERATED CONTINUAL INTRINSIC PLASTICITY

Synchronized experiences
Retain memory of previous
experiences via replay strategy


