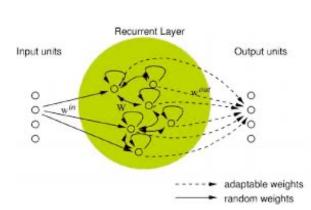

DECENTRALIZED PLASTICITY IN RESERVOIR DYNAMICAL NETWORKS FOR PERVASIVE ENVIRONMENTS

DAVIDE BACCIU Valerio De Caro CLAUDIO GALLICCHIO Department of Computer Science, University of Pisa, Italy

LEARNING IN PERVASIVE ENVIRONMENTS: SUMMARY AND OBJECTIVE

Pervasive environments \rightarrow massive distribution of resourceconstrained devices collecting private temporal data over time Learn a global model which generalizes over space and time by localizing the learning process on these dimensions

Echo State Networks with Intrinsic Plasticity Federated Averaging to deal with local private datasets Replay strategies to deal with streaming data



Combine the tools in a unified framework which accounts for uncertainty from distribution over space and time

LEARNING FROM TEMPORAL DATA, EFFICIENTLY

ECHO STATE NETWORKS

 $oldsymbol{W}_{in}$ and $oldsymbol{\widehat{W}}$ are randomized and $oldsymbol{fixed}$

$$\mathbf{x}_{net}(t) = \mathbf{W}_{in}\mathbf{u}(t) + \mathbf{b}_{rec} + \hat{\mathbf{W}}\mathbf{x}(t-1)$$

$$\mathbf{x}(t) = (1 - a)\mathbf{x}(t - 1) + af(\mathbf{g}\mathbf{x}_{net}(t) + \mathbf{b})$$
$$\mathbf{y}(t) = \mathbf{W}\mathbf{x}(t) + \mathbf{b}_{out}$$

RESERVOIR ADAPTATION: INTRINSIC PLASTICITY

Maximize the information gain via Maximum Entropy

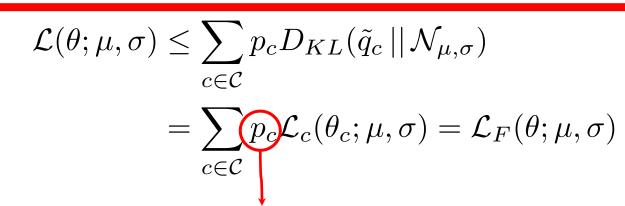
tanh activation → Gaussian as ME distribution

$$\mathcal{L}(\theta; \mu, \sigma) = D_{KL}(\tilde{q} || \mathcal{N}_{\mu, \sigma}) \text{ with } \theta = \{\mathbf{g}, \mathbf{b}\}$$

 $\Delta b = -\eta \left(-\frac{\mu}{\sigma^2} + \frac{\tilde{x}}{\sigma^2} + 1 - \tilde{x}^2 + \mu \tilde{x} \right)$

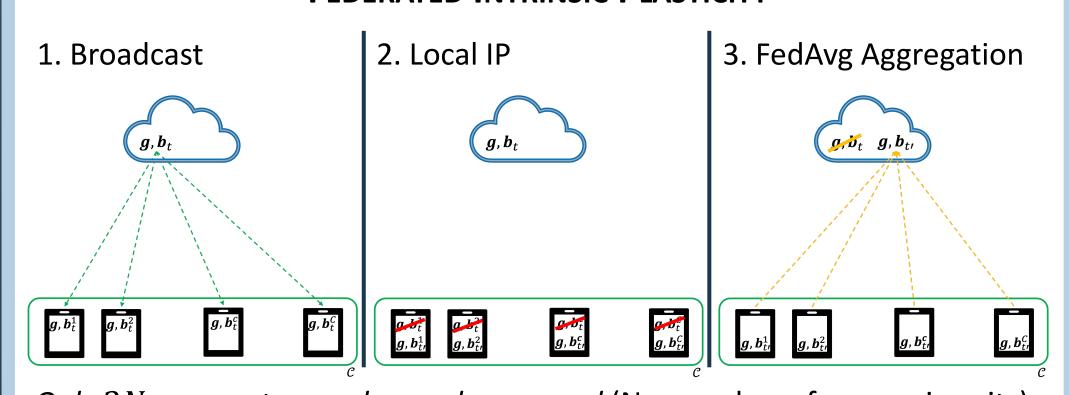
 $\Delta g = \frac{\eta}{a} + \Delta b x_{net}$

READOUT LEARNING: RIDGE REGRESSION

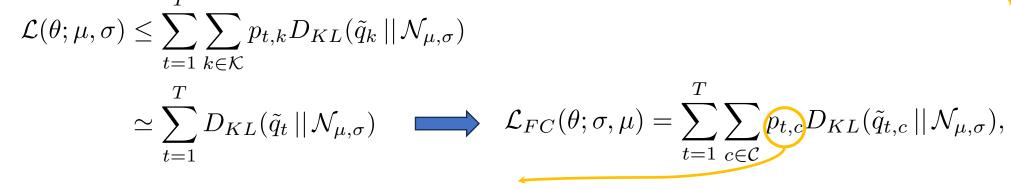

$$\mathbf{W} = \mathbf{Y}\mathbf{S}^T(\mathbf{S}\mathbf{S}^T + \lambda \mathbf{I})^{-1}$$

Extended for learning over space and time with an *exact* approach

$$\mathbf{W} = (\sum_i \mathbf{A}_i)^T (\sum_i \mathbf{B}_i + \lambda \mathbf{I})^{-1}$$


where i indexes a slice

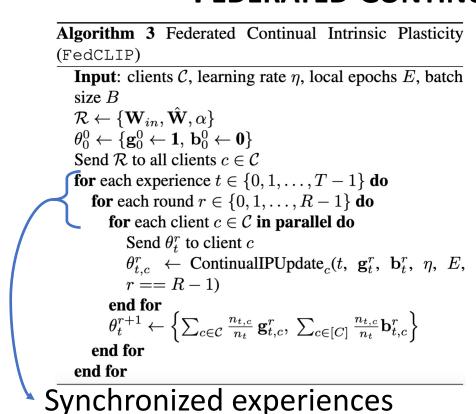
LOCALIZING PLASTICITY ON SPACE...


Convex combination of clients models, accounts for heterogeneity

FEDERATED INTRINSIC PLASTICITY

Only 2N parameters exchanged per round (N = number of reservoir units)

... AND TIME


Accounts for evolving heterogeneity

HHAR

Joint

Replay

FEDERATED CONTINUAL INTRINSIC PLASTICITY

WESAD

Replay

Algorithm 4 ContinualIPUpdate (on client *c*) **Env**: $stream = [\mathcal{D}_0, \mathcal{D}_1, \dots, \mathcal{D}_{T-1}], \mathcal{M}_0 = \{\}$ **Input**: experience t, global gain \mathbf{g}_t^r , global bias \mathbf{b}_t^r , learning rate η , epochs E, boolean update $\mathcal{B}_t \leftarrow \text{split data } \mathcal{D}_t \cup \mathcal{M}_t \text{ into a set of batches of size } B$ for epoch $e \in \{0, 1, \dots, E - 1\}$ do for batch $b \in \mathcal{B}$ do Compute the average $\Delta \mathbf{g}^b$, $\Delta \mathbf{b}^b$ over b $\mathbf{g}_t, \, \mathbf{b}_t \leftarrow \mathbf{g}_t + \Delta \mathbf{g}^b, \, \mathbf{b}_t + \Delta \mathbf{b}^b$ end for end for if update then $\mathcal{M}_{t+1} \leftarrow \text{UpdateWithStrategy}(\mathcal{D}_t, \mathcal{M}_t)$ return $\{\mathbf{g}_t, \mathbf{b}_t\}$ Retain memory of previous experiences via replay strategy

EXPERIMENTS

HHAR

%TR

Naïve

SETUP

Assessed on two HAR benchmarks splitted as below

- Baselines:
 - No FedIP on the stationary setting;
 - Naïve and Joint strategies on the non-stationary setting
- Repeated with different percentages of training clients
- Measured accuracy and activation density

FEDERATED AND STATIONARY

%TR	WE	ESAD	HHAR							
	w/o FedIP	w/ FedIP	w/o FedIP	w/ FedIP						
25%	72.09 ± 0.59	$\textbf{78.68} \pm \textbf{0.12}$	57.08 ± 3.11	69.83 ± 0.64						
50%	72.04 ± 1.03	77.43 ± 0.19	$oldsymbol{63.88} \pm extit{6.02}$	$oldsymbol{57.74} \pm 0.19$						
75%	76.53 ± 1.08	77.97 ± 0.41	71.09 ± 0.56	71.08 ± 0.69						
100%	77.78 ± 0.58	$\textbf{79.42} \pm \textbf{0.39}$	70.29 ± 0.99	71.38 ± 0.43						
Reservoir activation density on test users with FedIP User 4 User 6 User 10										
	24		- ba:	eline						
	21 18 0 0 0 19 19 19 19 19 19 19 19 19 19 19 19 19			ditation usement						
	0 15 15 15 15 15 15 15 15 15 15 15 15 15			delitere						
	25% (
	6 Reers									
	≝ ³									
	9 8									
	υ 6		A							
	= A) 5 4	A	A							
	0 8 3									
	Tueses 50% (L = 0,0 = 0.1)									
	56 0.90									
	o ≥ 0.60									
	ri) %5 0.45									
	v 0.30									
	(\$0.99 0.75 0.75 0.75 0.60 0.75 0.60 0.75 0.60 0.75 0.60 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.7									
	96: 1.6 I 1.4									
	0 // \\									
	o 1.2 ∃ ≥ 1.0									

WESAD

- ✓ FedIP outperforms baseline
- ✓ Regularizes with \leq 50% and improves information gain with 75-100%

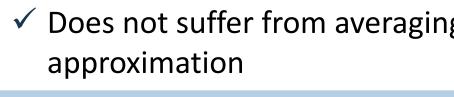
Does not suffer from averaging

FEDERATED AND NON-STATIONARY

Naïve

Joint

	l .								
25% 27.32 ± 10.86	$oldsymbol{79.23} \pm \emph{0.44}$	78.75 ± 0.67	34.85 ± 3.08	51.16 ± 5.88	$\textbf{69.44} \pm \textbf{0.38}$				
50% 30.60 ± 7.51	$\textbf{77.49} \pm \textbf{0.89}$	75.95 ± 1.07	30.16 ± 2.10	43.77 ± 1.50	60.85 ± 4.37				
75% 51.50 ± 4.10	77.04 ± 0.89	$\textbf{78.17} \pm \textbf{0.54}$	28.62 ± 0.93	59.83 ± 0.88	$\textbf{71.14} \pm \textbf{0.84}$				
100% 50.80 ± 1.50	77.46 ± 1.31	$\textbf{79.51} \pm \textbf{0.35}$	30.30 ± 0.43	62.28 ± 0.54	$\textbf{71.22} \pm \textbf{0.32}$				
Reservoir activation dens User 4	sity on final experience with FedCLIP User 6	User 10	Reservoir activation density - FedCLIP - WESAD - 25% User 4 User 6 User 10						
(SC) 1.8 0 0 1.5 0 0 1.5 0 0 1.5 0 0 1.5 0 0 1.5 0 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A	baseline stress of the stress			baseline street meditation anusement				
E 3.5 0 3.0 0 2.5 3.0 0 2.5 3.0 0 3.0 0 3.0	A	1.5 1.2 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2							
SS 1.0 SS 0.5 (SG 0.75		1.25 1.25 1.25 1.25 1.00 1.00 1.05							
7,000 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0		1.8 1.5 1.5 2.98490.99 0.6 0.3		A					
(6) 1.50 0 1.25 0 A.1.00 1.35,000 0 1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50		2.0 2.0 tengate 2.0 2.0 tengat							


- ✓ Results consistent with the stationary setting
- ✓ Replay strategy consistently mitigates forgetting
- ✓ Good forward transfer

Conclusions

- Extended ESNs' **Intrinsic Plasticity** towards a learning approach localized on space and time
- Proposed two communicationefficient algorithms for stationary and non-stationary data
- Both approaches do not suffer from the approximation and lead to good generalization

ACKNOWLEDGEMENTS

This work is supported by the EC H2020 program under project TEACHING (grant n. 871385).

