Learning Optimal Group-structured Individualized Treatment Rules with Many Treatments

Haixu Ma*, Donglin Zeng, Yufeng Liu

 Department of Statistics and Operations Research University of North Carolina at Chapel Hill

International Conference on Machine Learning (ICML), Hawaii, 2023
 Journal-to-Conference Track (Journal of Machine Learning Research)

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Individualized Decision Making

- Example in Personalized Medicine
 - Individualized cancer treatment: tailoring therapies based on patients' genomic biomarkers to optimize future health status

Figure 1: Transition from "one size fits all" to personalized medicing

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Setup

- Data $(Z, A, Y) \in \mathcal{Z} \times \mathcal{A} \times \mathbb{R}$
 - **1** Features $Z \in \mathcal{Z} \subseteq \mathbb{R}^p$:
 - **2** Assigned treatment $A \in \mathcal{A} = \{1, 2, \dots, M\}$, where M can be large
 - **3** Reward $Y \in \mathbb{R}$:
- Propensity score $p(a|z) := \mathbb{P}(A = a|Z = z)$ for $a \in \mathcal{A}$ and $z \in \mathbb{R}^p$
- \star Individualized Treatment Rule (ITR) $D: \mathcal{Z}
 ightarrow \mathcal{A}$
- Under SUTVA assumptions [Rubin, 1974], value function [Zhao et al., 2012] of an ITR *D* is

$$\mathcal{V}(D) = \mathbb{E}\left[\frac{\mathbb{I}[D(Z) = A]}{p(A|Z)}Y\right] \Leftarrow \text{Inverse Probability Weighting (IPW)}$$

• Goal: Learn optimal ITR $D^* \in \mathcal{D}$ that maximizes the value function

$$D^* \in \arg\max_{D \in \mathcal{D}} \mathcal{V}(D),$$

```
where for any z \in \mathcal{Z},
```

$$D^*(\boldsymbol{z}) \in \operatorname*{arg\,max}_{\boldsymbol{a} \in A}$$

$$\mathbb{E}[Y|Z=\boldsymbol{z}, A=a]$$

Heterogeneous Treatment Effect (HTE)

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Setup

- Data $(Z, A, Y) \in \mathcal{Z} \times \mathcal{A} \times \mathbb{R}$
 - **1** Features $Z \in \mathcal{Z} \subseteq \mathbb{R}^p$:
 - 2 Assigned treatment $A \in \mathcal{A} = \{1, 2, \dots, M\}$, where M can be large
 - 3 Reward $Y \in \mathbb{R}$:
- Propensity score $p(a|z) := \mathbb{P}(A = a|Z = z)$ for $a \in \mathcal{A}$ and $z \in \mathbb{R}^p$
- \bigstar Individualized Treatment Rule (ITR) $D: \mathcal{Z} \to \mathcal{A}$
- Under SUTVA assumptions [Rubin, 1974], value function [Zhao et al., 2012] of an ITR *D* is

$$\mathcal{V}(D) = \mathbb{E}\left[\frac{\mathbb{I}[D(Z) = A]}{p(A|Z)}Y\right] \Leftarrow \text{Inverse Probability Weighting (IPW)}$$

• Goal: Learn optimal ITR $D^* \in \mathcal{D}$ that maximizes the value function

$$D^* \in \arg\max_{D \in \mathcal{D}} \mathcal{V}(D),$$

where for any $\boldsymbol{z} \in \mathcal{Z}$,

$$D^{*}(z) \in \underset{a \in \mathcal{A}}{\operatorname{arg max}} \underset{\bigstar}{\mathbb{E}[Y|Z = z, A = a]} \underset{\bigstar}{\mathbb{Heterogeneous Treatment Effect (HTE)}}$$

Motivations and Challenges

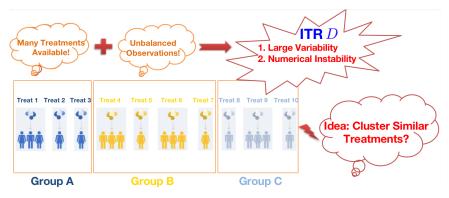


Figure 2: Learning optimal ITRs with many treatments.

Motivations and Challenges

1 Many treatments but limited observations for some specific treatments:

- Patient-Derived Xenograft study: more than 20 treatments
- Unbalanced treatment assignment
- Current (direct/indirect) methods suffer from large variability + numerical instability

 \star How to learn the optimal ITR for **many** treatments?

2 Treatments in large treatment space may work similarly for patients

- Depression study: many treatment options are combined into SSRI/non-SSRI groups
- Few methods deal with clustering treatments
 How to cluster the treatments with similar treatment effects?

Motivations and Challenges

1 Many treatments but limited observations for some specific treatments:

- Patient-Derived Xenograft study: more than 20 treatments
- Unbalanced treatment assignment
- Current (direct/indirect) methods suffer from large variability + numerical instability

★ How to learn the optimal ITR for **many** treatments?

2 Treatments in large treatment space may work similarly for patients

- Depression study: many treatment options are combined into SSRI/non-SSRI groups
- Few methods deal with clustering treatments

 \star How to **cluster** the treatments with similar treatment effects?

- \star Idea: Estimate optimal partition on \mathcal{A} to cluster similar treatments
- Aim to partition $|\mathcal{A}| = M_n$ (large) treatments into K_n treatment groups ۲
- Supervised clustering: learn optimal ITR (supervised learning), while <u>at the same time</u> clustering treatments (unsupervised learning)

Group-structured ITR

- Define group-structured ITR class $\mathcal{D} = \bigcup_{\delta} \mathcal{D}_{\delta}$: •
 - For a fixed δ , a group-structured ITR $\in \mathcal{D}_{\delta}$ is obtained from a random policy π_{δ} given as

$$\pi_{\delta}(a|\mathbf{z}) = \underbrace{\mathbb{I}[\delta(a) = D_g(\mathbf{z})]}_{\text{Deterministic}} \underbrace{\frac{p(a|\mathbf{z})}{p(\delta(a)|\mathbf{z})}}_{\text{Random}}$$

- $D_q: \mathcal{Z} \to [K_n]$, group-based decision rule
- $p(\delta(a)|z)$: propensity score of $\delta(a)$ -th group under δ

Group-structured ITR - Value Function and Optimal Partition

• Value of group-structured ITR $\mathcal{V}_1(\delta, D_g)$:

$$\mathcal{V}_1(\delta, D_g) = \mathbb{E}\left[\frac{\mathbb{I}[D_g(Z) = \delta(A)]}{p(\delta(A)|Z)}Y\right]$$

- For any δ , let $D_g^{\delta} \in \arg \max_{D_g} \mathcal{V}_1(\delta, D_g)$ be optimal group-based decision rule
- $\mathcal{V}_1^*(\delta) := \mathcal{V}_1(\delta, D_q^{\delta})$ is corresponding optimal value for δ
- \bigstar Optimal partition $\delta^* \in \arg \max_{\delta} \mathcal{V}_1^*(\delta) := \Delta^*$
- Key observation:

 $\mathcal{V}^* = \mathbb{E}_Z \big[\max_{a \in [M_n]} \mathbb{E}[Y|A = a, Z] \big] \Leftarrow \mathsf{Individual Treatment Domain}$ $\mathcal{V}_1^*(\delta) = \mathbb{E}_Z \big[\max_{k \in [K_n]} \mathbb{E}[Y|A \in G_k^{\delta}, Z] \big] \Leftarrow \mathsf{Group Treatment Domain}$

 ★ Interpretation: δ* optimizes expected group-based heterogeneous treatment effects

Group-structured ITR - Value Function and Optimal Partition

• Value of group-structured ITR $\mathcal{V}_1(\delta, D_g)$:

$$\mathcal{V}_1(\delta, D_g) = \mathbb{E}\left[\frac{\mathbb{I}[D_g(Z) = \delta(A)]}{p(\delta(A)|Z)}Y\right]$$

- For any δ , let $D_g^{\delta} \in \arg \max_{D_g} \mathcal{V}_1(\delta, D_g)$ be optimal group-based decision rule
- $\mathcal{V}_1^*(\delta) := \mathcal{V}_1(\delta, D_g^{\delta})$ is corresponding optimal value for δ
- \bigstar Optimal partition $\delta^* \in \arg \max_{\delta} \mathcal{V}_1^*(\delta) := \Delta^*$
- Key observation:

 $\mathcal{V}^* = \mathbb{E}_Z \big[\max_{a \in [M_n]} \mathbb{E}[Y|A = a, Z] \big] \Leftarrow \text{Individual Treatment Domain}$ $\mathcal{V}_1^*(\delta) = \mathbb{E}_Z \big[\max_{k \in [K_n]} \mathbb{E}[Y|A \in G_k^{\delta}, Z] \big] \Leftarrow \text{Group Treatment Domain}$

 ★ Interpretation: δ* optimizes expected group-based heterogeneous treatment effects

GRoup Outcome Weighted Learning (GROWL)

- Goal: Estimate optimal partition δ^* and group-based decision rule D_g
- Maximizing value function $\mathcal{V}_1 \Leftrightarrow$ minimizing risk function $\mathcal{\tilde{R}}$ [Zhao et al., 2012]

$$\blacktriangleright \max_{\delta, D_g} \mathcal{V}_1(\delta, D_g) \Leftrightarrow \min_{\delta, D_g} \left\{ \widetilde{\mathcal{R}}(\delta, D_g) := \mathbb{E} \left[\frac{\mathbb{I}[D_g(Z) \neq \delta(A)]}{p(\delta(A)|Z)} Y \right] - \underbrace{\mathbb{E} \left[\frac{Y}{p(\delta(A)|Z)} \right]}_{\text{free of } \delta} \right\}$$

- Two-step implementation:
 - 1) For each δ , estimate D_g^{δ} : minimizing risk $\mathcal{R} \Leftrightarrow$ Weighted Classification

$$\widehat{D}_g^{\delta} \in \mathop{\arg\min}_{D_g} \mathbb{E}_n \big[\underbrace{\frac{Y}{p(\delta(A)|Z)}}_{\text{Weighted}} \underbrace{\mathbb{I}[D_g(Z) \neq \delta(A)]}_{\text{Classification}} \big]$$

2 Plug (δ, f^{δ}) back to \mathcal{R}_{ϕ} and solve integer programming problem fo

THE UNIVERSITY of NORTH CAROLIN/ at CHAPEL HILL

GRoup Outcome Weighted Learning (GROWL)

- Goal: Estimate optimal partition δ^* and group-based decision rule D_g
- Maximizing value function $\mathcal{V}_1 \Leftrightarrow \text{minimizing risk function } \widetilde{\mathcal{R}}$ [Zhao et al., 2012]

$$\blacktriangleright \max_{\delta, D_g} \mathcal{V}_1(\delta, D_g) \Leftrightarrow \min_{\delta, D_g} \left\{ \widetilde{\mathcal{R}}(\delta, D_g) := \mathbb{E} \left[\frac{\mathbb{I}[D_g(Z) \neq \delta(A)]}{p(\delta(A)|Z)} Y \right] - \underbrace{\mathbb{E} \left[\frac{Y}{p(\delta(A)|Z)} \right]}_{\text{free of } \delta} \right\}$$

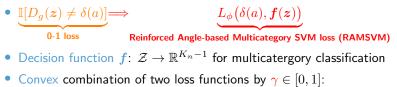
- Two-step implementation:
 - **1** For each δ , estimate D_g^{δ} : minimizing risk $\mathcal{R} \Leftrightarrow$ Weighted Classification

$$\widehat{D}_{g}^{\delta} \in \operatorname*{arg\,min}_{D_{g}} \mathbb{E}_{n} \big[\underbrace{\frac{Y}{p(\delta(A)|Z)}}_{\text{Weighted}} \underbrace{\mathbb{I}[D_{g}(Z) \neq \delta(A)]}_{\text{Classification}} \big]$$

2 Plug $(\delta, \hat{f}^{\delta})$ back to $\widetilde{\mathcal{R}}_{\phi}$ and solve integer programming problem for δ

GROWL: RAMSVM Loss [Zhang et al., 2016]

Step 1:



• \star Group-based decision rule: Maximizing $\langle \cdot, \cdot \rangle \Leftrightarrow$ minimizing angle:

 $D_g(oldsymbol{z}) = rgmax_{k\in [K_n]} \langle \mathbf{W}_k, oldsymbol{f}(oldsymbol{z})
angle$

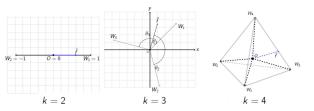
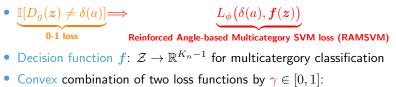


Figure 3: Angle-based multicategory classification.

GROWL: RAMSVM Loss [Zhang et al., 2016]

Step 1:



• \star Group-based decision rule: Maximizing $\langle \cdot, \cdot \rangle \Leftrightarrow$ minimizing angle:

$$D_g(oldsymbol{z}) = rgmax_{k\in[K_n]} \langle \mathbf{W}_k, oldsymbol{f}(oldsymbol{z})
angle$$

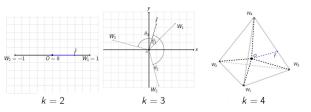
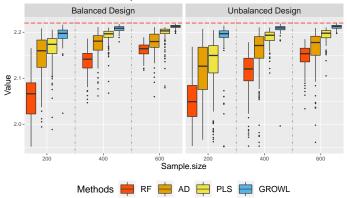


Figure 3: Angle-based multicategory classification.

Homogeneous Case

• Treatment effects have homogeneous grouping structure:



Empirical Value for Scenario 1

Figure 4: Boxplots of value under *homogeneous* settings and different designs. Red dashed lines demonstrate the oracle value.

f the University of North Caroli at Chapel Hill

Non-homogeneous Case

- ★ Trade-off between *bias* and *variance* for value
 - As distance between treatments ⁺: group structure tends to lose; bias ⁺
 - Variance of GROWL is small since we consider the group structure

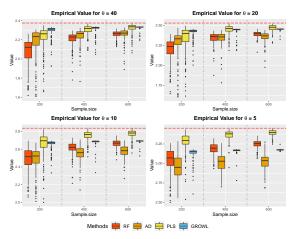


Figure 5: Boxplots of value under nonhomogeneous settings and unbalanced designation and unbalanced de

Other Contributions

We also

- Solved weighted classification problem with RAMSVM effectively
- Proposed coordinate descent type of greedy algorithm to adjust partition δ
- Provided extensive theoretical guarantee for
 - Generalized Fisher consistency
 - Generalized bound for excess risk
 - Convergence rate for value function
- Conducted both simulation studies and real data analysis on depression study

© Thanks for your listening!

Welcome to join our poster session:
 Poster Session 2: 2-3:30 pm, July 25th (Tuesday), Exhibit Hall 1, #131

References I

Rubin, D. B. (1974).

Estimating causal effects of treatments in randomized and nonrandomized studies.

Journal of educational Psychology, 66(5):688.

- Zhang, C., Liu, Y., Wang, J., and Zhu, H. (2016).
 Reinforced angle-based multicategory support vector machines.
 Journal of Computational and Graphical Statistics, 25(3):806–825.
- Zhao, Y., Zeng, D., Rush, A. J., and Kosorok, M. R. (2012).
 Estimating individualized treatment rules using outcome weighted learning. *Journal of the American Statistical Association*, 107(499):1106–1118.

