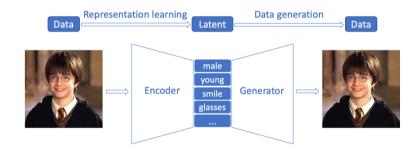
Disentangled Generative Causal Representation Learning

Xinwei Shen, Furui Liu, Hanze Dong, Qing Lian, Zhitang Chen, Tong Zhang

HKUST

Representation Learning and Disentanglement

Representation learning and generation



- Observed data $x \sim q_x$ on $\mathcal{X} \subseteq \mathbb{R}^d$
- Latent variable $z \sim p_z$ on $\mathcal{Z} \subseteq \mathbb{R}^k$
- Bidirectional generative model: learning an encoder $E: \mathcal{X} \to \mathcal{Z}$ (to learn representations) and a generator $G: \mathcal{Z} \to \mathcal{X}$ (to generate data).
- Example: variational auto-encoder (VAE)

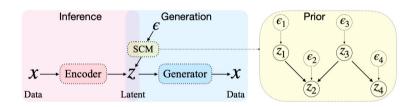
Disentanglement

Disentanglement as a common goal:

- In representation learning, an effective representation for downstream learning tasks should disentangle the underlying factors of variation.
- In generation, it is highly desirable if one can control the semantic generative factors.
- Both goals can be achieved with the *disentanglement* of latent variable z, which informally means that each dimension of z measures a distinct factor of variation in the data (Bengio et al., 2013).

Formulation

Generative model with a causal prior



• We adopt the general nonlinear Structural Causal Model (SCM):

$$f(z) = A^{\top} f(z) + h(\epsilon), \tag{3}$$

$$z = f^{-1}((I - A^{\top})^{-1}h(\epsilon)) := F_{\beta}(\epsilon), \tag{4}$$

where ϵ denotes the exogenous variables, $A \in \mathbb{R}^{k \times k}$ is the weighted adjacency matrix, f and h are element-wise nonlinear transformations.

• (3) enables intervention; (4) enables generation.

Supervised regularizer

- Let $\xi \in \mathbb{R}^m$ be the underlying factors of x, and y_i be some continuous or discrete observation of factor ξ_i satisfying $\xi_i = \mathbb{E}(y_i|x)$ for $i = 1, \ldots, m$.
- Let $\bar{E}(x)$ be the deterministic part of the stochastic transformation E(x), i.e., $\bar{E}(x) = \mathbb{E}(E(x)|x)$, which is used for representation learning.
- We consider the following objective:

$$L(E,G) = L_{gen}(E,G) + \lambda L_{sup}(E), \tag{2}$$

where

- $L_{\sup} = \sum_{i=1}^m \mathbb{E}_{(x,y)}[\mathsf{CE}(\bar{E}_i(x),y_i)]$ if y_i is the binary or bounded continuous label of ξ_i ;
- $L_{\sup} = \sum_{i=1}^m \mathbb{E}_{(x,y)} [\bar{E}_i(x) y_i]^2$ if y_i is the continuous observation of ξ_i .

Algorithm

Algorithm

```
Algorithm 1: Disentangled gEnerative cAusal Representation (DEAR) Learning
```

Input: training set $\{x_1, \dots, x_N, y_1, \dots, y_{N_s}\}$, initial parameter $\phi, \theta, \beta, \psi$, batch size n1 while not convergence do

2 for multiple steps do

Sample $\{x_1, \ldots, x_n\}$ from the training set, $\{\epsilon_1, \ldots, \epsilon_n\}$ from $\mathcal{N}(0, I)$ 3 Generate from the causal prior $z_i = F_{\beta}(\epsilon_i), i = 1, \dots n$ Update ψ by descending the stochastic gradient:

 $\frac{1}{n}\sum_{i=1}^{n}\nabla_{\psi}\left[\log(1+e^{-D_{\psi}(x_{i},E_{\phi}(x_{i}))})+\log(1+e^{D_{\psi}(G_{\theta}(z_{i}),z_{i})})\right]$

Sample $\{x_1, \ldots, x_n, y_1, \ldots, y_{n_s}\}$, $\{\epsilon_1, \ldots, \epsilon_n\}$ as above; generate $z_i = F_{\beta}(\epsilon_i)$ Compute θ -gradient: $-\frac{1}{n}\sum_{i=1}^n s(G_{\theta}(z_i), z_i)\nabla_{\theta}D_{\psi}(G_{\theta}(z_i), z_i)$ Compute ϕ -gradient: $\frac{1}{n}\sum_{i=1}^n \nabla_{\phi}D_{\psi}(x_i, E_{\phi}(x_i)) + \frac{1}{n_s}\sum_{i=1}^{n_s} \nabla_{\phi}L_{\sup}(\phi; x_i, y_i)$ Compute θ -gradient: $-\frac{1}{n}\sum_{i=1}^n s(G(z_i), z_i)\nabla_{\theta}D_{\psi}(G_{\theta}(F_{\beta}(\epsilon_i)), F_{\beta}(\epsilon_i))$

Update parameters ϕ, θ, β using the gradients

Return: ϕ, θ, β

4

Formulation of DEAR

• Rewrite the generative loss:

$$L_{\text{gen}}(\phi, \theta, \beta) = D_{\text{KL}}(q_{\phi}(x, z), p_{\theta, \beta}(x, z)). \tag{5}$$

• Formulation to learn disentangled generative causal representations:

$$\min_{\phi,\theta,\beta} L(\phi,\theta,\beta) := L_{\mathsf{gen}}(\phi,\theta,\beta) + \lambda L_{\mathsf{sup}}(\phi). \tag{6}$$

Theory

Identifiability of disentanglement

Theorem

Assume the infinite capacity of E, G and f. Further assume the true binary adjacency matrix can be learned. Then DEAR learns the disentangled encoder E^* . Specifically, we have $g_i(\xi_i) = \sigma^{-1}(\xi_i)$ if CE loss is used in the supervised regularizer, and $g_i(\xi_i) = \xi_i$ if L_2 loss is used.

Optimization

- The SCM prior $p_{\beta}(z)$ and implicit generated conditional $p_{\theta}(x|z)$ make $L_{\rm gen}$ in (5) lose an analytic form.
- The lemma gives the gradient.
- We adopt a GAN method to adversarially estimate the gradient of $L_{\rm gen}$ as in Shen et al. (2020).

Lemma (Gradient)

Let
$$r(x,z) = q(x,z)/p(x,z)$$
 and $\mathcal{D}(x,z) = \log r(x,z)$. Then we have
$$\nabla_{\theta} L_{\text{gen}} = -\mathbb{E}_{z \sim p_{\beta}(z)}[s(x,z)\nabla_{x}\mathcal{D}(x,z)^{\top}|_{x=G_{\theta}(z)}\nabla_{\theta}G_{\theta}(z)],$$

$$\nabla_{\phi} L_{\text{gen}} = \mathbb{E}_{x \sim q_{x}}[\nabla_{z}\mathcal{D}(x,z)^{\top}|_{z=E_{\phi}(x)}\nabla_{\phi}E_{\phi}(x)],$$

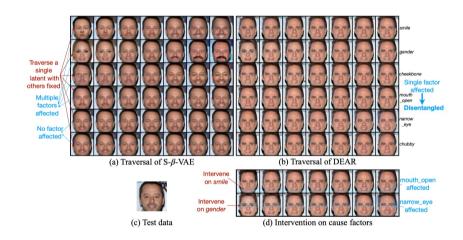
$$\nabla_{\beta} L_{\text{gen}} = -\mathbb{E}_{\epsilon}[s(x,z)(\nabla_{x}\mathcal{D}(x,z)^{\top}\nabla_{\beta}G(F_{\beta}(\epsilon)) + \nabla_{z}\mathcal{D}(x,z)^{\top}\nabla_{\beta}F_{\beta}(\epsilon))|_{z=F_{\beta}(\epsilon)}^{x=G(F_{\beta}(\epsilon))}],$$
(7)

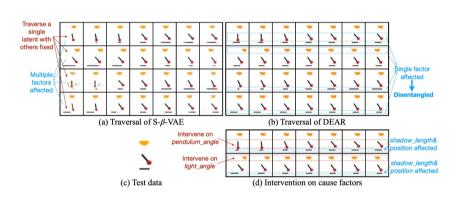
where $s(x, z) = e^{\mathcal{D}(x,z)}$ is the scaling factor.

Controllable Generation

Causal controllable generation (CelebA)

Causal controllable generation (Pendulum)





Better Representations

Distributional robustness

Table: The worst-case and average test accuracy.

(د	Ce	ما	h
. 4,	CC		υ,

(b) Pendulum

. ,			. ,		
Method WorstAcc(%)		AvgAcc(%)	WorstAcc(%)	AvgAcc(%)	
ERM	59.12±1.78	82.12±0.26	60.48±2.73	87.40±0.89	
DEAR-lin-10%	71.40 ±0.47	81.04±0.14	63.93±1.33	89.70±0.63	
DEAR-nlr-10%	70.44 ± 1.02	$81.94{\scriptstyle\pm0.31}$	$65.59 \scriptstyle{\pm 1.90}$	$90.19{\scriptstyle\pm0.63}$	
ERM-multilabel	59.17 ± 4.02	82.05±0.25	61.70±4.02	87.20±1.00	
S-VAE	60.54 ± 3.48	$79.51{\scriptstyle\pm0.58}$	$20.78{\scriptstyle\pm4.45}$	$84.26{\scriptstyle\pm1.31}$	
$S-\beta$ -VAE	$63.85{\scriptstyle\pm2.09}$	$80.82{\scriptstyle\pm0.19}$	44.12 ± 9.73	$86.99{\scriptstyle\pm1.78}$	
S-TCVAE	64.93 ± 3.30	$81.58{\scriptstyle\pm0.14}$	$35.50{\scriptstyle\pm5.57}$	$86.64{\scriptstyle\pm1.15}$	
DEAR-lin	76.05 \pm 0.70	$83.56{\scriptstyle\pm0.09}$	74.95 ± 1.26	93.61 ± 0.13	
DEAR-nlr	$71.37{\scriptstyle\pm0.66}$	83.81 ± 0.08	$72.48{\scriptstyle\pm0.74}$	$93.11{\scriptstyle\pm0.14}$	
S-VAE S-β-VAE S-TCVAE DEAR-lin	60.54 ± 3.48 63.85 ± 2.09 64.93 ± 3.30 76.05 ±0.70	$79.51 \pm 0.58 \\ 80.82 \pm 0.19 \\ 81.58 \pm 0.14 \\ 83.56 \pm 0.09$	20.78 ± 4.45 44.12 ± 9.73 35.50 ± 5.57 74.95 ± 1.26	$84.26\pm1.$ $86.99\pm1.$ $86.64\pm1.$ $93.61\pm0.$	

Sample efficiency

 Statistical efficiency score: the average test accuracy based on 100 samples divided by the average accuracy based on 10,000/all samples (Locatello et al., 2019).

Table: Sample efficiency and test accuracy with different training sample sizes.

/ '		
12) Ce	lΔh
ιa	,	CD

(b) Pendulum

Method	100(%)	10,000(%)	Eff(%)	100(%)	all(%)	Eff(%)
ResNet	68.06±0.19	79.51±0.31	85.59±0.27	79.71±0.98	90.64±1.57	87.97±2.11
DEAR-lin-10%	78.09 ± 0.59	79.54 ± 0.41	98.18±0.49	88.93±1.40	93.18±0.18	95.43±1.33
DEAR-nlr-10%	$80.30{\pm}\scriptstyle 0.24$	$80.87{\pm0.12}$	99.29 ± 0.23	$87.65{\scriptstyle\pm0.46}$	$91.27{\scriptstyle\pm0.21}$	96.03 ± 0.29
ResNet-pretrain	76.84 ± 2.08	83.75±0.93	91.74±1.98	79.59±0.93	89.16±1.60	89.28±0.59
S-VAE	$77.07{\pm} \scriptstyle 1.42$	$79.87{\scriptstyle\pm1.67}$	$96.49{\scriptstyle\pm1.68}$	84.16 ± 0.69	90.89 ± 0.28	92.60 ± 0.49
$S-\beta$ -VAE	$71.78{\scriptstyle\pm1.99}$	76.63 ± 0.24	93.67 ± 2.41	$79.95{\scriptstyle\pm1.65}$	87.87 ± 0.52	90.98 ± 1.47
S-TCVAE	77.10 ± 2.08	81.63 ± 0.20	94.45 ± 2.72	$85.36{\scriptstyle\pm1.11}$	90.33 ± 0.33	94.51 ± 1.31
DEAR-lin	83.51 ± 0.77	84.92 ± 0.11	98.34 ± 0.81	90.21 ± 0.94	93.31 ± 0.14	96.68 ± 0.89
DEAR-nlr	84.44 ± 0.48	$85.10 {\scriptstyle\pm0.09}$	99.23 ± 0.51	90.62 ± 0.32	$92.57{\pm0.08}$	97.93 ±0.29

Conclusion

- We identified a problem with previous methods using the independent prior assumption, and proved that they fail to disentangle when the underlying factors are causally correlated.
- We proposed a new disentangled learning method, DEAR, which integrates an SCM prior into a bidirectional generative model, trained with a suitable GAN loss.
- We provided theoretical justifications on the identifiability of the formulation and the asymptotic consistency of our algorithm.
- Extensive experiments were conducted to demonstrate the effectiveness of DEAR in causal controllable generation, and the benefits of the learned representations for downstream tasks.