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Graph Metrics

One important case of the problem is when S is the space of metrics
defined on a certain graph.

M ⇢ R(
n
2
) be the space such that for all 1  i < j < k  n we

have that
Mij +Mjk � Mik

This space is known an the metric polytope.

Definition 1

Give a graph G, the metric polytope defined by G is the projec-
tion of M onto the coordinates that correspond to the edges in G.
We shall denote this space MET(G).

Definition 2



What does MET(G) look like

In general given a cycle C = v1 . . . , vk we say this cycle is broken
if

w(v1, vk)�
k�1X

i=1

w(vi, vi+1) > 0

We shall the edge with the large weight as the heavy edge and the
other edges as the light edge. We say call the di↵erence (i.e. the
quantity on the left) the deficit of a cycle.

Broken Cycles

w 2 MET(G) if and only if G = (V,E,w) has no broken cycles
and w(e) � 0 for all e 2 E

Remark



Graph Metric Optimization

We can formulate the above problem as the following constrained
optimization problem.

minimize f(D)
subject to D 2 MET(G)

where f is a strictly convex function and G is a given graph.

Metric Constrained Problems



Specific Problem Formulations

• Metric nearness
� Given D, n⇥ n matrix of distances, find closest metric

M̂ = argmin kD �Mkp s.t. M 2 METn.

• (Weighted) Correlation clustering
� Given graph G and (dis)similarity measures on each edge e = (i, j),

w+(e) and w�(e), partition nodes into clusters by minimizing

min
X

e2E

w+(e)xe + w�(e)(1� xe) s.t. x 2 MET(G).



Optimization Techniques: Existing Methods

• Constrained optimization problems with many constraints: O(n3)
for simple triangle inequality constraints, possibly exponentially
many for graph cycle constraints.

• Existing methods don’t scale.
� Run out of memory, or
� take too long to converge.



Project and Forget

We propose a new iterative algorithm Project and Forget

1. Find a well chosen subset of violated constrained using an
oracle to add constraints to the problem.

2. Iteratively project onto to our current chosen constraints.

3. Forget some constraints.

Steps



Theoretical results: Summary

If f 2 B(S), Hi are strongly zone consistent with respect to f , and
9x0 2 S such that rf(x0) = 0, then

1. Then any sequence xn produced by Project and Forget

converges to the optimal solution of problem.

2. If x⇤ is the optimal solution, f is twice di↵erentiable at x⇤,
and the Hessian H := Hf(x⇤) is positive definite, then there

exists ⇢ 2 (0, 1) such that

lim
⌫!1

kx⇤ � x⌫+1kH
kx⇤ � x⌫kH

 ⇢ (0.1)

where kyk2
H

= yTHy.

Theorem 1 (Sonthalia and Gilbert)





Project and Forget: Results - Metric Nearness

Here we have f(x) = 0.5kxk2 and S = MET(Kn).

Algorithm Number of Nodes

100 200 300 400 500 600 700 800 900 1000

PF 13.5 32.7 85.1 170 271 458 720 983 1356 1649

Cyclic Bregman 1.77 10.5 47.1 141 322 558 910 1472 2251 3167

Mosek 11.7 542 Out of Memory

SCS 1632 19466 Timed Out

OSQP 64.5 3383 Timed Out

ProxSDP 353 684 Timed Out

Ipopt 2792 Timed Out

ECOS 597 Timed Out

CPLEX Out of Memory

SLSQP Timed Out

COSMO Timed Out

Metric Nearness: Time



Weighted Correlation Clustering

Graph n # Constraints Time # Active Constraints Iters.

Slashdot 82140 5.54 ⇥ 10
14

46.7 hours 384227 145

Epinions 131,828 2.29 ⇥ 10
15

121.2 hours 579926 193

Table 1: Time taken and quality of solution returned by Project and
Forget when solving the weighted correlation clustering problem for sparse
graphs. The table also displays the number of constraints the traditional LP
formulation would have.



Metric Nearness

Forget step is the crucial step!

(a) Relative Objective Error (b) Feasibility Error



Weighted Correlation Clustering

Forget step is still crucial!

(c) Number of constraints. (d) Max Violation.

Figure 1: Plots showing the number of constraints returned by the oracle, the
number of constraints after the forget step, and the maximum violation of a
metric constraint when solving correlation clustering on the Ca-HepTh graph



Non-Metric Constrained Problem - Optimal Transport

OT (a, b) = minhC,P i
Subject to: a = P1m, b = P T1n, Pij � 0

(0.2)

Primal

Minimize: hC,P i+ �ka� P1mk2 + �kb� P T1nk2
Subject to: 8i 2 [n], 8j 2 [m], Pij � 0

(0.3)

Quadratically Regularized

Min: 1
�
kfk2 + 1

�
kgk2 � hf ,ai � hg, bi

Subject to: fi + gj  Cij

(0.4)

Dual



Results

Algorithm 501 1001 5001 10001 20001

PF 12 151 1972 5909 21665
LBFGSB 24 162 4080 Out of memory.
Mosek dual 56 328 1927 Out of memory.
Mosek primal 5 Out of memory.
CPLEX primal 105 Out of memory.
CPLEX dual Out of memory.

PGD Did not converge.

Table 2: Time taken in seconds to solve the quadratic regularized optimal
transport problem. All experiments were run on a machine with 52 GB of
RAM.



Extensions and applications

• The paper presents an extension of Project and Forget to
general convex constraints, not simply metric or linear constraints.

• Applications include: sparse optimal transport (dual regularized),
`2 SVMs, information theoretic metric learning.

• Can also be used to project onto the cone of submodular functions
and for solving problems with graphical probability models. See
Sonthalia, Seigal, Montufar 2023.


