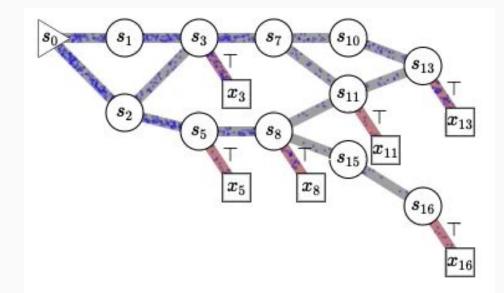


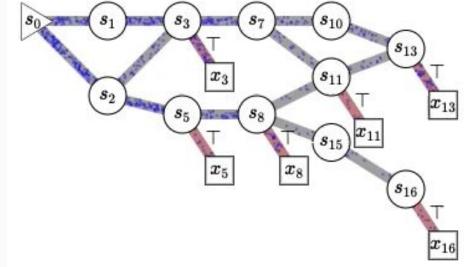
Learning GFlowNets From Partial Episodes For Improved Convergence And Stability


Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, Andrei Cristian Nica, Tom Bosc, Yoshua Bengio, Nikolay Malkin

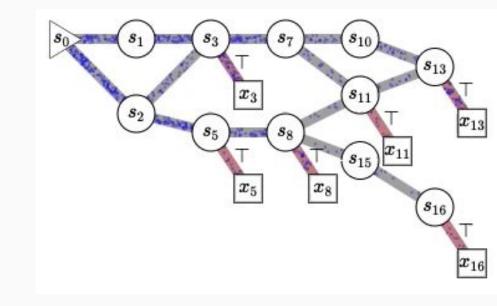
Flow of unnormalized probabilities

Flow of unnormalized probabilities

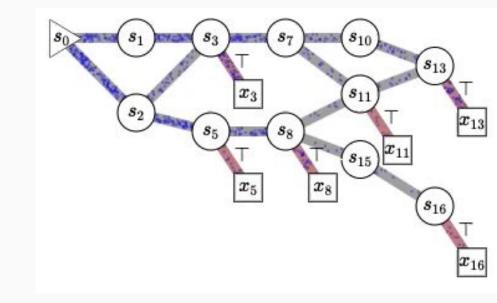
Flow Based Network

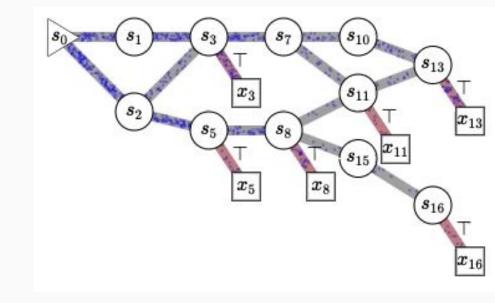


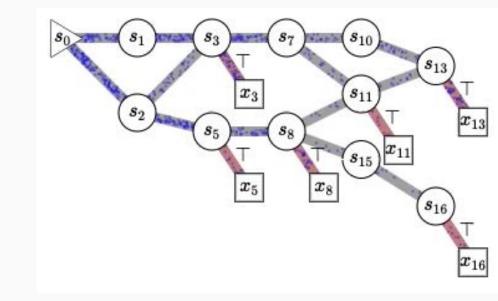
Flow of unnormalized probabilities


Flow Based Network

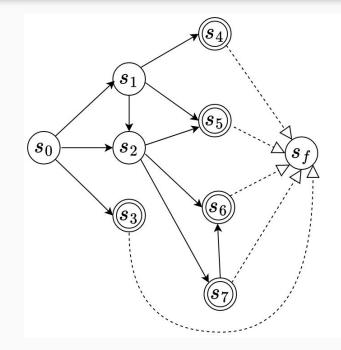
• Analogy:


Water flowing from source to sink


- Flow Based Network
- Generative Model

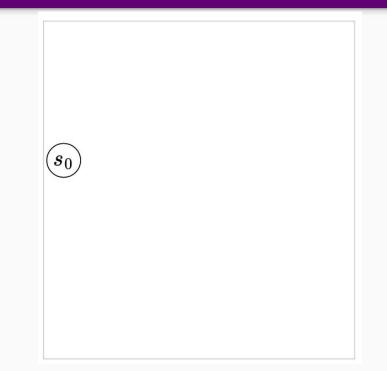

- Flow Based Network
- Generative Model • Stochastic Policy

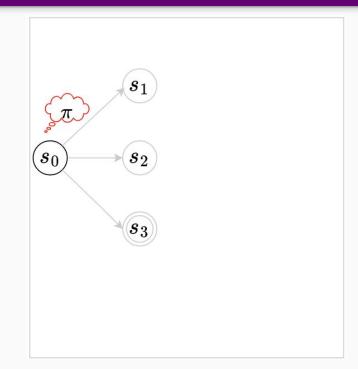
- Flow Based Network
- Generative Model
 Stochastic Policy
- Generates objects sequentially

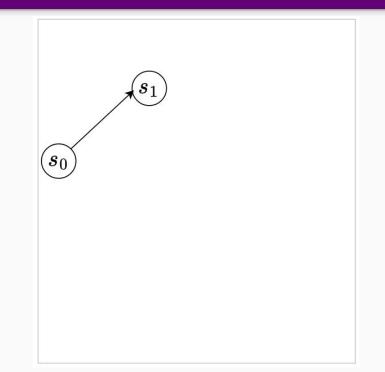


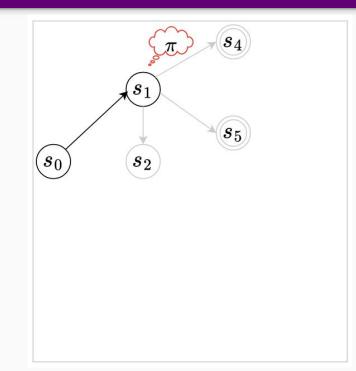
- Flow Based Network
- Generative Model
 Stochastic Policy
- Generates objects sequentially
- Directed Acyclic Graph

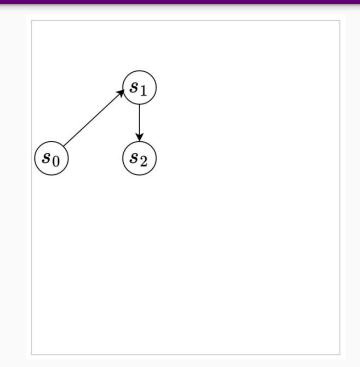
→ Generate Objects Sequentially

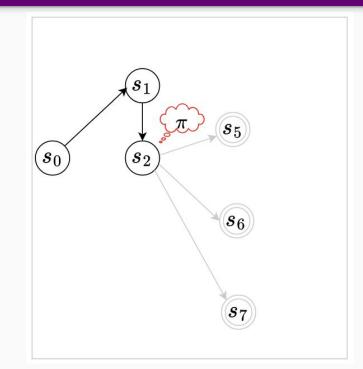

Generate Objects Sequentially



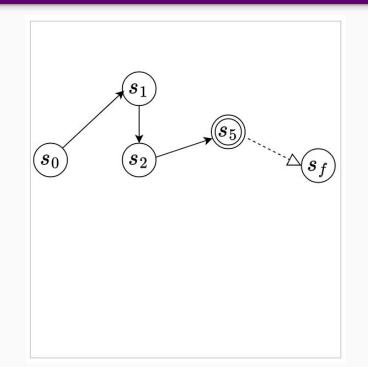

- (s_0) Initial State
- (s_f) Sink State

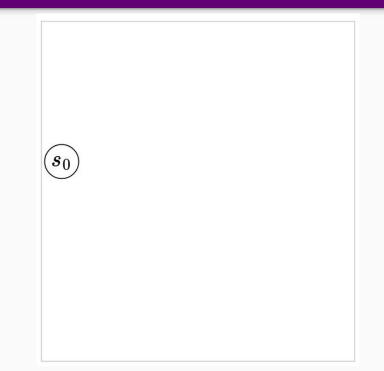


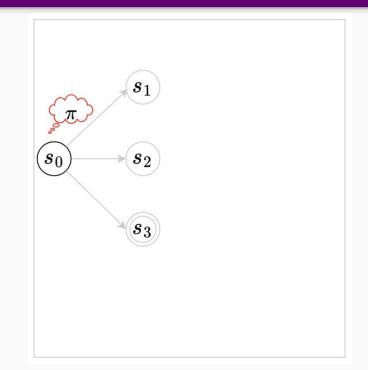

- Torminating Edge
- > Terminating Edge
- → Non-terminating Edge

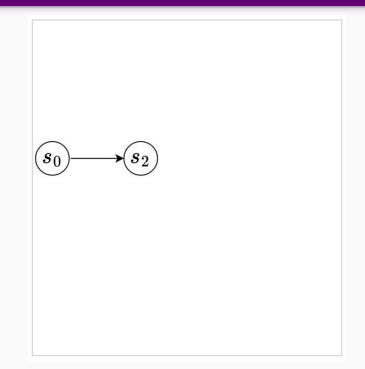


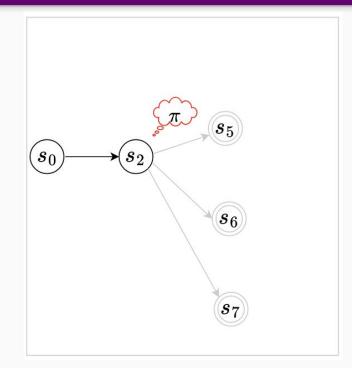


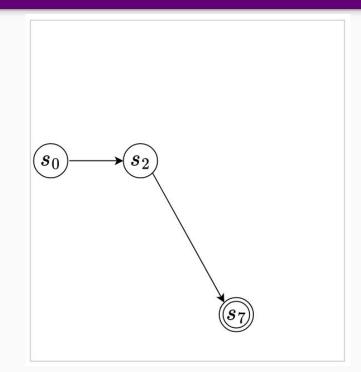


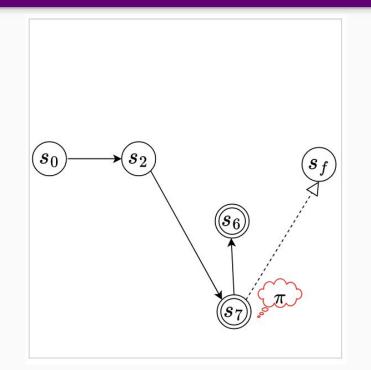


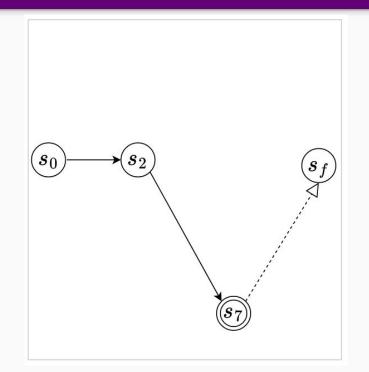


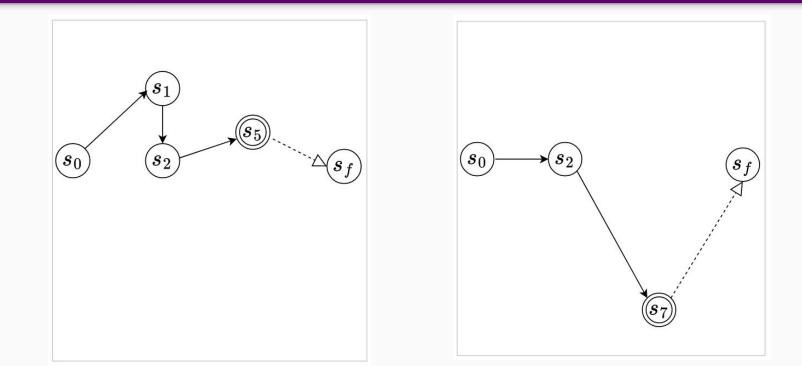


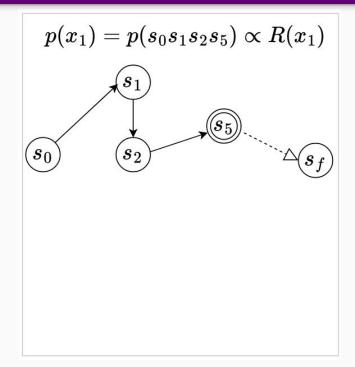

Generate Objects Sequentially

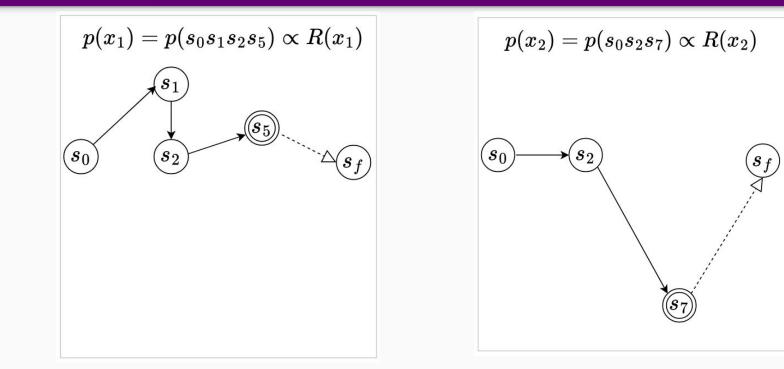

→ Stochastic Policy





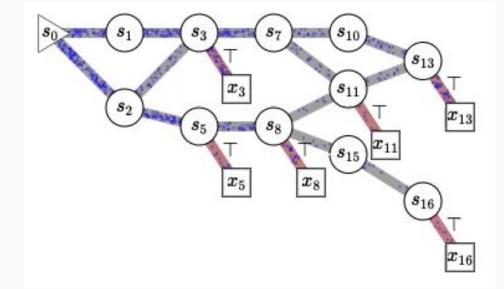






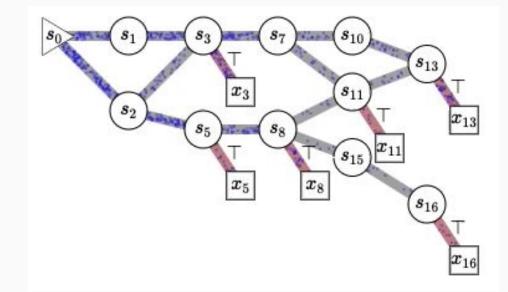
Generative Model

Objects Generated Proportional to Reward



Training GFlowNets

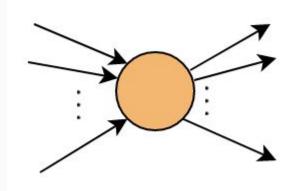
GFlowNets - Training


• Flow Consistency Equations

GFlowNets - Training

• Flow Consistency Equations

• Forward Flow = Backward Flow

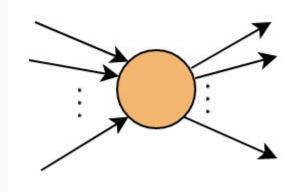

GFlowNets Training Objectives

Flow Matching Objective

• Flow Consistency Equations

• Flow Matching

$$\mathcal{L}_{\mathrm{FM}}(s) = \left(\log \frac{\sum_{s:(s \to t) \in \mathcal{A}} F(s \to t; \theta) + \epsilon}{\sum_{u:(t \to u) \in \mathcal{A}} F(t \to u; \theta) + \epsilon}\right)^2$$

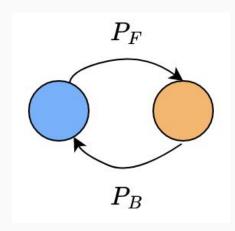


Flow Matching Objective

• Flow Consistency Equations

- Flow Matching
 - State level flow matching

$$\mathcal{L}_{\rm FM}(s) = \left(\log \frac{\sum_{s:(s \to t) \in \mathcal{A}} F(s \to t; \theta) + \epsilon}{\sum_{u:(t \to u) \in \mathcal{A}} F(t \to u; \theta) + \epsilon}\right)^2$$

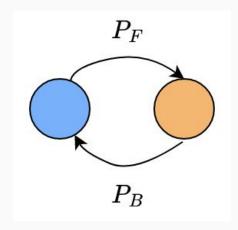


Detailed Balance Objective

• Flow Consistency Equations

• Detailed Balance:

$$\mathcal{L}_{\text{DB}}(s, s') = \left(\log \frac{F_{\theta}(s) P_F(s' \mid s; \theta)}{F_{\theta}(s') P_B(s \mid s'; \theta)}\right)^2$$

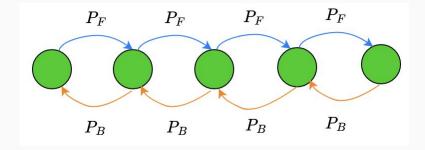


Detailed Balance Objective

• Flow Consistency Equations

- Detailed Balance:
 - Edge level flow matching

$$\mathcal{L}_{\text{DB}}(s, s') = \left(\log \frac{F_{\theta}(s) P_F(s' \mid s; \theta)}{F_{\theta}(s') P_B(s \mid s'; \theta)}\right)^2$$

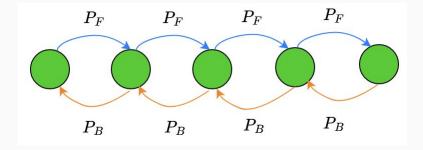


Trajectory Balance Objective

Flow Consistency Equations

• Trajectory Balance:

$$\mathcal{L}_{\text{TB}}(\tau) = \left(\log \frac{Z_{\theta} P_F(\tau; \theta)}{R(x_{\tau}) P_B(\tau \mid x_{\tau}; \theta)}\right)^2$$



Trajectory Balance Objective

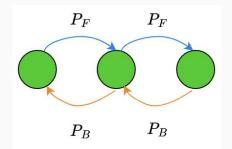
Flow Consistency Equations

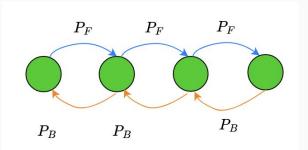
- Trajectory Balance:
 - Trajectory level flow matching

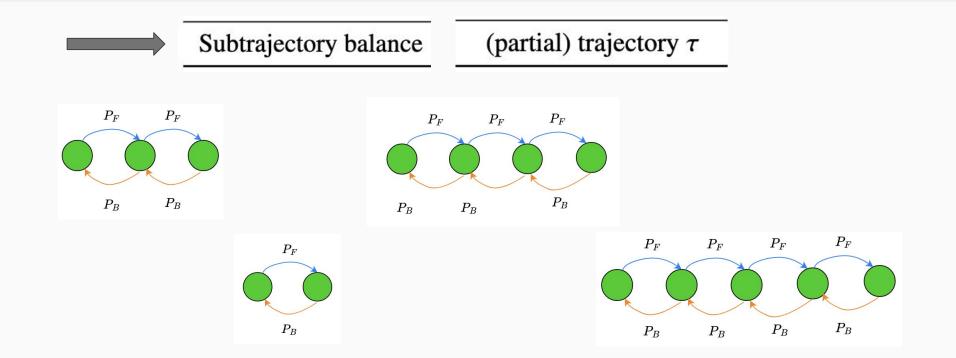
$$\mathcal{L}_{\text{TB}}(\tau) = \left(\log \frac{Z_{\theta} P_F(\tau; \theta)}{R(x_{\tau}) P_B(\tau \mid x_{\tau}; \theta)}\right)^2$$

GFlowNets Training Objectives

Objective	Parametrization	Locality
FM	edge flow $F(s \rightarrow t; \theta)$	state s
DB	state flow $F(s; \theta)$, policies $P_F(- -; \theta)$, $P_B(- -; \theta)$	action $s \rightarrow t$
TB	initial state flow Z_{θ} , policies $P_F(- -;\theta)$, $P_B(- -;\theta)$	complete trajectory τ


GFlowNets Training Objectives


Objective	Parametrization	Locality
FM	edge flow $F(s \rightarrow t; \theta)$	state s
DB	state flow $F(s; \theta)$, policies $P_F(- -; \theta)$, $P_B(- -; \theta)$	action $s \rightarrow t$
TB	initial state flow Z_{θ} , policies $P_F(- -;\theta)$, $P_B(- -;\theta)$	complete trajectory τ
$\mathbf{SubTB}(\lambda)$	state flow $F(s; \theta)$, policies $P_F(- -; \theta)$, $P_B(- -; \theta)$	(partial) trajectory τ



Subtrajectory balance

(partial) trajectory τ

$$F(s_m;\theta)\prod_{i=m}^{n-1}P_F(s_{i+1}|s_i;\theta) = F(s_n;\theta)\prod_{i=m}^{n-1}P_B(s_i|s_{i+1};\theta),$$

$$P_F = P_F P_F P_F$$

 P_B

 P_B

 P_B

 P_B

$$F(s_{m};\theta)\prod_{i=m}^{n-1}P_{F}(s_{i+1}|s_{i};\theta) = F(s_{n};\theta)\prod_{i=m}^{n-1}P_{B}(s_{i}|s_{i+1};\theta).$$

$$P_{F} = P_{F} = P_{F}$$

$$P_{F} = P_{F}$$

$$P_{$$

SubTrajectory(λ) or SubTB(λ): GFlowNet Objectives Unified & Extended

 P_B

 P_B

 P_B

 P_B

• SubTrajectory (λ)

$$\mathcal{L}_{\text{SubTB}(\lambda)}(\tau) = \frac{\sum_{0 \le m < n \le N} \lambda^{n-m} \mathcal{L}_{\text{SubTB}}(\tau_{m:n})}{\sum_{0 \le m < n \le N} \lambda^{n-m}}$$

• Unifies Detailed Balance and Trajectory Balance

• SubTrajectory (λ)

$$\mathcal{L}_{\text{SubTB}(\lambda)}(\tau) = \frac{\sum_{0 \le m < n \le N} \lambda^{n-m} \mathcal{L}_{\text{SubTB}}(\tau_{m:n})}{\sum_{0 \le m < n \le N} \lambda^{n-m}}$$

• Unifies Detailed Balance and Trajectory Balance

$$\lambda
ightarrow 0^+$$
 : $\sum_i \mathcal{L}_{ ext{DB}}(s_i, s_{i+1})$

• SubTrajectory (λ)

$$\mathcal{L}_{\text{SubTB}(\lambda)}(\tau) = \frac{\sum_{0 \le m < n \le N} \lambda^{n-m} \mathcal{L}_{\text{SubTB}}(\tau_{m:n})}{\sum_{0 \le m < n \le N} \lambda^{n-m}}$$

• Unifies Detailed Balance and Trajectory Balance

$$\lambda
ightarrow 0^+$$
 : $\sum_i \mathcal{L}_{ ext{DB}}(s_i, s_{i+1})$

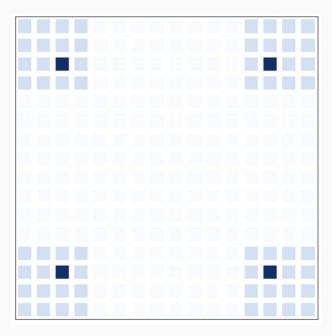
$$\lambda \to +\infty : \mathcal{L}_{\text{TB}}(\tau)$$

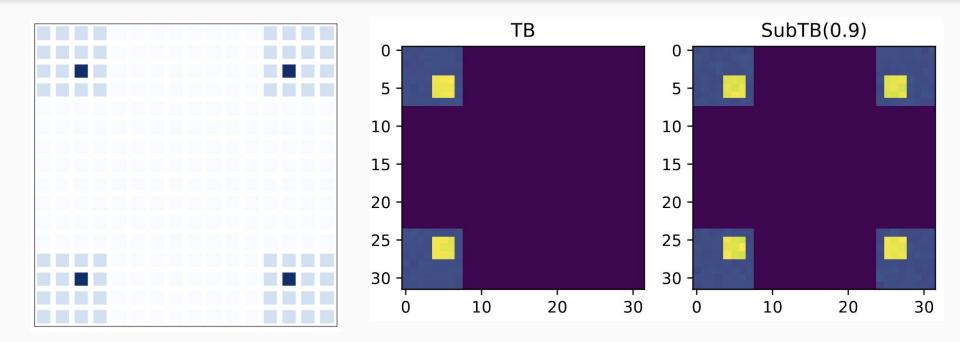
$$\mathcal{L}_{\text{SubTB}(\lambda)}(\tau) = \frac{\sum_{0 \le m < n \le N} \lambda^{n-m} \mathcal{L}_{\text{SubTB}}(\tau_{m:n})}{\sum_{0 \le m < n \le N} \lambda^{n-m}}$$

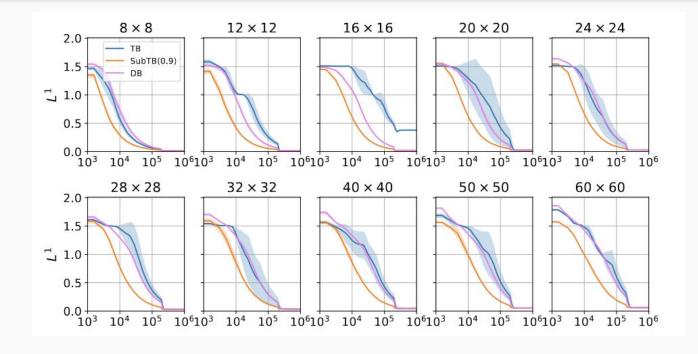
- Unifies Previous Objectives
 - $\circ \quad \text{Detailed Balance:} \ \lambda \to 0^+$
 - Trajectory Balance: $\lambda \rightarrow +\infty$
- Lower gradient variance

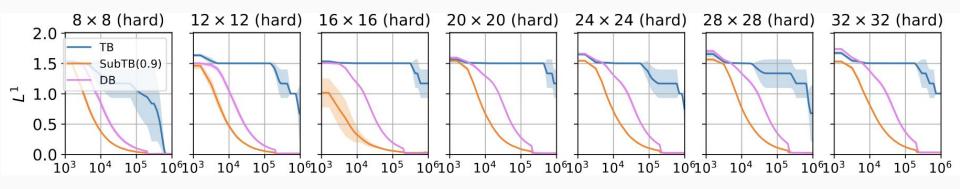
$$\mathcal{L}_{\text{SubTB}(\lambda)}(\tau) = \frac{\sum_{0 \le m < n \le N} \lambda^{n-m} \mathcal{L}_{\text{SubTB}}(\tau_{m:n})}{\sum_{0 \le m < n \le N} \lambda^{n-m}}$$

- Unifies Previous Objectives
 - $\circ \quad \text{Detailed Balance:} \ \lambda \to 0^+$
 - Trajectory Balance: $\lambda \rightarrow +\infty$
- Lower gradient variance
- Better stability and Faster convergence

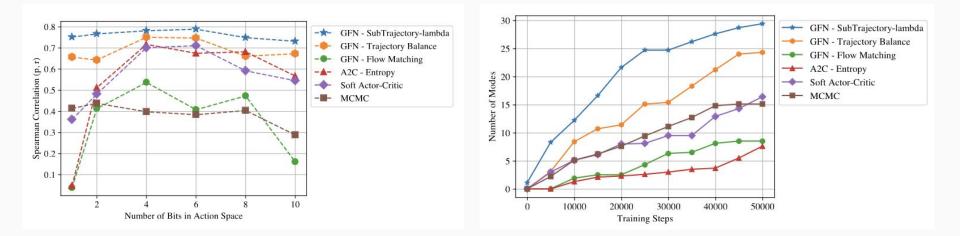

$$\mathcal{L}_{\text{SubTB}(\lambda)}(\tau) = \frac{\sum_{0 \le m < n \le N} \lambda^{n-m} \mathcal{L}_{\text{SubTB}}(\tau_{m:n})}{\sum_{0 \le m < n \le N} \lambda^{n-m}}$$

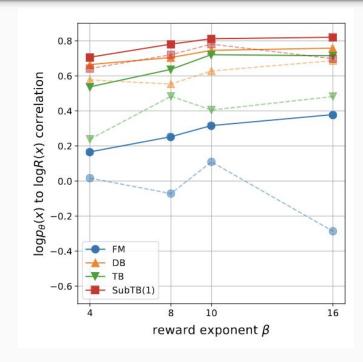

- Unifies Previous Objectives
 - $\circ \quad \text{Detailed Balance:} \ \lambda \to 0^+$
 - Trajectory Balance: $\lambda \rightarrow +\infty$
- Lower gradient variance
- Better stability and Faster convergence
- Wider set of applications


SubTB(λ): Experiments & Results


Experiments: SubTB (λ)

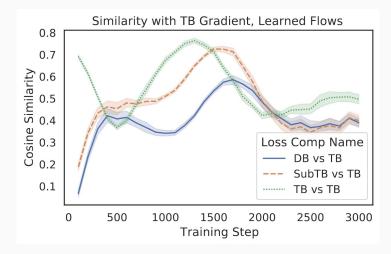
- 6 domains:
- 1. Hypergrid: Multi-dimensional grid
- 2. Small Molecule Synthesis: sequential generation of molecules from fixed graphs
- 3. Bit Sequence Generation: sequences of bits with fixed length
- 4. AMP: Antimicrobial Peptide sequence generation
- 5. GFP: Fluorescent Protein Generation long sequences
- 6. Inverse protein folding: Non-autoregressive sequence generation





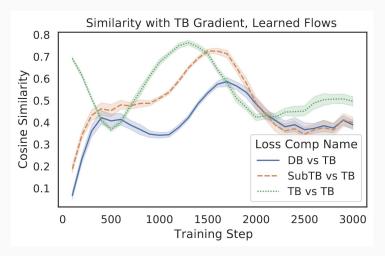
Experiments: Bit Sequence

Experiments: Small Molecule

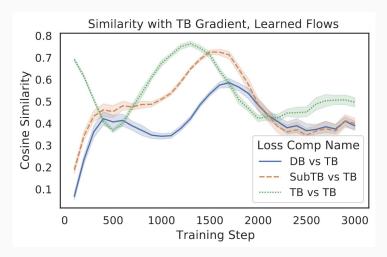

Experiments: AMP and GFP sequence

Algorithm	Top-100 Reward	Top-100 Diversity
$\operatorname{GFN-}\mathcal{L}_{\operatorname{SubTB}(\lambda)}$	0.96 ± 0.02	42.23 ± 3.4
$GFN-\mathcal{L}_{TB}$	0.90 ± 0.03	31.42 ± 2.9
$\text{GFN-}\mathcal{L}_{\text{FM}}/\mathcal{L}_{\text{DB}}$	0.78 ± 0.05	12.61 ± 1.32
SAC	0.80 ± 0.01	8.36 ± 1.44
AAC-ER	0.79 ± 0.02	7.32 ± 0.76
MCMC	0.75 ± 0.02	12.56 ± 1.45
$\operatorname{GFN-}\mathcal{L}_{\operatorname{SubTB}(\lambda)}$	1.18 ± 0.10	204.44 ± 0.45
$GFN-\mathcal{L}_{TB}$	0.76 ± 0.19	204.31 ± 0.44
$GFN-\mathcal{L}_{FM}/\mathcal{L}_{DB}$	0.30 ± 0.08	190.21 ± 6.78
SAC	0.23 ± 0.03	120.32 ± 15.57
AAC-ER	0.22 ± 0.02	113.65 ± 21.31
MCMC	0.28 ± 0.01	169.17 ± 12.44
	$\frac{\mathcal{L}}{GFN-\mathcal{L}_{SubTB(\lambda)}}$ $\frac{GFN-\mathcal{L}_{TB}}{GFN-\mathcal{L}_{FM}/\mathcal{L}_{DB}}$ $\frac{SAC}{AAC-ER}$ $\frac{MCMC}{GFN-\mathcal{L}_{SubTB(\lambda)}}$ $\frac{GFN-\mathcal{L}_{TB}}{GFN-\mathcal{L}_{FM}/\mathcal{L}_{DB}}$ $\frac{SAC}{AAC-ER}$	$GFN-\mathcal{L}_{SubTB(\lambda)}$ 0.96 ± 0.02 $GFN-\mathcal{L}_{TB}$ 0.90 ± 0.03 $GFN-\mathcal{L}_{FM}/\mathcal{L}_{DB}$ 0.78 ± 0.05 SAC 0.80 ± 0.01 $AAC-ER$ 0.79 ± 0.02 $MCMC$ 0.75 ± 0.02 $GFN-\mathcal{L}_{SubTB(\lambda)}$ 1.18 ± 0.10 $GFN-\mathcal{L}_{TB}$ 0.76 ± 0.19 $GFN-\mathcal{L}_{FM}/\mathcal{L}_{DB}$ 0.30 ± 0.08 SAC 0.23 ± 0.03 $AAC-ER$ 0.22 ± 0.02

SubTB(λ): Gradient Analysis


Gradient Analysis: SubTB(λ)

 Small-batch SubTB(λ) gradient is a good estimator of large-batch TB gradient.


Gradient Analysis: SubTB(λ)

- Small-batch SubTB(λ) gradient is a good estimator of large-batch TB gradient.
- Despite its bias, the small-batch SubTB(λ) gradient estimates the full-batch TB gradient better than small-batch TB gradient.

Gradient Analysis: SubTB(λ)

- Small-batch SubTB(λ) gradient is a good estimator of large-batch TB gradient.
- Despite its bias, the small-batch SubTB(λ) gradient estimates the full-batch TB gradient better than small-batch TB gradient.
- SubTB(λ) interpolates between the unbiased gradient estimates of TB and the biased gradient estimates of DB.

$$\mathcal{L}_{\text{SubTB}(\lambda)}(\tau) = \frac{\sum_{0 \le m < n \le N} \lambda^{n-m} \mathcal{L}_{\text{SubTB}}(\tau_{m:n})}{\sum_{0 \le m < n \le N} \lambda^{n-m}}$$

$$\mathcal{L}_{\text{SubTB}(\lambda)}(\tau) = \frac{\sum_{0 \le m < n \le N} \lambda^{n-m} \mathcal{L}_{\text{SubTB}}(\tau_{m:n})}{\sum_{0 \le m < n \le N} \lambda^{n-m}}$$

- Unifies Previous Objectives
 - $\circ \quad \text{Detailed Balance:} \ \lambda \to 0^+$
 - Trajectory Balance: $\lambda \rightarrow +\infty$

$$\mathcal{L}_{\text{SubTB}(\lambda)}(\tau) = \frac{\sum_{0 \le m < n \le N} \lambda^{n-m} \mathcal{L}_{\text{SubTB}}(\tau_{m:n})}{\sum_{0 \le m < n \le N} \lambda^{n-m}}$$

- Unifies Previous Objectives
 - $\circ \quad \text{Detailed Balance:} \ \lambda \to 0^+$
 - Trajectory Balance: $\lambda \to +\infty$
- Lower gradient variance

$$\mathcal{L}_{\text{SubTB}(\lambda)}(\tau) = \frac{\sum_{0 \le m < n \le N} \lambda^{n-m} \mathcal{L}_{\text{SubTB}}(\tau_{m:n})}{\sum_{0 \le m < n \le N} \lambda^{n-m}}$$

- Unifies Previous Objectives
 - $\circ \quad \text{Detailed Balance:} \ \lambda \to 0^+$
 - Trajectory Balance: $\lambda \to +\infty$
- Lower gradient variance
- Faster convergence, Better stability

$$\mathcal{L}_{\text{SubTB}(\lambda)}(\tau) = \frac{\sum_{0 \le m < n \le N} \lambda^{n-m} \mathcal{L}_{\text{SubTB}}(\tau_{m:n})}{\sum_{0 \le m < n \le N} \lambda^{n-m}}$$

- Unifies Previous Objectives
 - \circ Detailed Balance: $\lambda \rightarrow 0^+$
 - Trajectory Balance: $\lambda \rightarrow +\infty$
- Lower gradient variance
- Faster convergence, Better stability
- Better matching of the underlying distribution

$$\mathcal{L}_{\text{SubTB}(\lambda)}(\tau) = \frac{\sum_{0 \le m < n \le N} \lambda^{n-m} \mathcal{L}_{\text{SubTB}}(\tau_{m:n})}{\sum_{0 \le m < n \le N} \lambda^{n-m}}$$

- Unifies Previous Objectives
 - Detailed Balance: $\lambda \rightarrow 0^+$
 - Trajectory Balance: $\lambda \rightarrow +\infty$
- Lower gradient variance
- Faster convergence, Better stability
- Better matching of the underlying distribution
- Wider set of applications

Thanks!

Poster -26 Jul @ 2 p.m Exhibit Hall 1 #535

Paper