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Putting it all together … :
Very nice 

… but this is all 
linear…?



Discussion

1. Extension to nonlinear functional relationships: Given 
the motivational dataset, the linearity assumption is 
restrictive. 


1. How can we interpret a nonlinear instrumented 
subspace?


2. How can we transfer the confounding strength to 
nonlinear settings? Do we need a different stopping 
criterion?


2. Similarity metric, i.e. proposal of instruments: how does 
this transfer to real world data?
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Figure 2. Results for the sequential selection of instruments with dz = 30, did = 15, NIV/exp = 3, T = 6 and dx = 50: each boxplot
shows the median and mean (solid resp. dashed line), first and third quartile (box height) and 10/90 percentiles (whiskers) over nruns = 250.
Left: The upper panel shows the of squared error \P↵[t]

� � � over rounds t 2 {1, . . . , 6}. The lower panel shows the corresponding

percentages of unidentified components. Right: The ||\P↵[t]�|| increases for t 2 {1, . . . , 6} approaching d||�|| (dotted orange line), which
perfectly estimates the true k�k in this case (dotted black line).
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Figure 3. Results for the sequential selection of instruments with dz = 30, did = 15, NIV/exp = 3, T = 6 and dx = 50: each boxplot
shows the median and mean (solid resp. dotted line), first and third quartile (box height) and 10/90 percentiles (whiskers) over nruns = 250
after the last round T = 6. Top: estimates of the nonzero components of � with the black dotted line being ground truth. Bottom:

distribution of cosine similarities in Equation (6) for each component.

by our combination procedure. We refer to Appendix B for
results on a dx = 150 setting.

6. Conclusion

In this work we made multiple contributions aiming at infer-
ring causal effects of high-dimensional treatments under un-
observed confounding by sequential experimentation, where
we cannot intervene on the treatments directly, but can only
randomize instruments. We proposed consistent, asymptoti-
cally normal estimators for the orthogonal projection of a
treatment effect onto the instrumented subspace in the linear
setting and introduced a method to consistently combine
such estimates from separate experiments. Surprisingly, nei-
ther the (perhaps intuitive) estimator in Proposition 1, nor
the geometric intuition around instrumented subspaces in
the underspecified setting can be found in existing literature.
These estimators may be of independent interest as a con-
tribution to the largely ignored underspecified IV setting.
We then developed an algorithm to sequentially propose
subsets of instruments from a given pool that flexibly trades
off the expected information gain (informed by provided
similarities) with the cost of each experiment. Moreover,
we integrated a stopping criterion for when the sequential
selection has fully identified the causal effect, a method to
keep track of all components that are consistently estimated,

and an upper bound on the absolute error of unidentified
components: these additions inform the practitioner about
whether (and which parts) of the estimate can be trusted.

The linearity assumption may appear restrictive. However,
the linear IV setting is still heavily used in econometrics
and health, as it reliably captures dominant effects even in
noisy settings, and still attracts attention with novel results
recently (Pfister & Peters, 2022; Rothenhäusler et al., 2018).
The thorough theoretical understanding developed in this
work is a challenging and necessary foundation for exper-
iment design via instrument selection. Extensions of our
method and of our notion of the instrumented subspace to
(certain) non-linear settings is an important direction for
future work. A second limitation of our work is inherent
to the problem setting: missing real-world experiments due
to a lack of access to the required expensive, specialized
facilities. Finally, we highlight that independent testing and
verification is paramount when using algorithmically ob-
tained insights to inform consequential decisions such as
actual clinical treatment decisions.
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