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We look at the setting more formally ...
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instrumental variables. In Proceedings of the 38th Annual Conference on Uncertainty in
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p=0.95
f(x) =—0.27 + 0.262

Actually we forgot something ...

Unless we have million antibiotics,
We have less instruments than treatments d, < d,
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No
microbiome
would survive this...!!
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We need to combine the estimators ...
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... use the previous experiments as constraints ...
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. use the previous experiments as constraints ...
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Ifhen p; is identified with e; as the standard basis.
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Putting it all together ... :

Very nice
... but this is all
linear...?

Single estimator for Combined estimator Algorithm for Method for checking
the underspecified for the multiple sequential selection individual
case for one round of rounds of and a component-
experiments. experiments. stopping criterion identification.

for effect identification.
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Discussion

1. Extension to nonlinear functional relationships: Given
the motivational dataset, the linearity assumption is
restrictive.

1. How can we interpret a nonlinear instrumented
subspace?

2. How can we transfer the confounding strength to
nonlinear settings? Do we need a different stopping
criterion?

2. Similarity metric, i.e. proposal of instruments: how does
this transfer to real world data?
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