Sequential Underspecified Instrument Selection for CauseEffect Estimation.

Elisabeth Ailer, Jason Hartford, Niki Kilbertus

HELMHOLTZ MUNICIT

- Recursion.

Mila
TII

NewScientist
 News Features Newsletters Podcasts Video
 Comment Culture
 Health Space Physics Technology Environment Mind Humans Life Mathematics Chemistry Earth Society
 Mind
 Could your gut bacteria influence how intelligent you are?
 People who are genetically predisposed to have higher levels of Fusicatenibacter bacteria scored better on verbal and mathematical tests, while those with more Oxalobacter scored lower
 By Carissa Wong
 钲 10 June 2023
 $f \geqslant \Leftrightarrow$ in $\dot{\boldsymbol{\omega}} \boldsymbol{y}$

NewScientist
 News Features Newsletters Podcasts Video Comment Culture Crosswords | This week's magazine
 Health Space Physics Technology Environment Mind Humans Life Mathematics Chemistry Earth Society
 Mind
 Could your gut bacteria influence how intelligent you are?
 People who are genetically predisposed to have higher levels of Fusicatenibacter bacteria scored better on verbal and mathematical tests, while those with more Oxalobacter scored lower
 By Carissa Wong
 当 10 June 2023
 $f \geqslant \Leftrightarrow$ in $\dot{\boldsymbol{\omega}} \boldsymbol{y}$

Which bacteria make me smart ???

Which bacteria make me smart ???

Gut microbiome

Which bacteria make me smart ???

Gut microbiome

Which bacteria make me smart ???

Which bacteria make me smart ???

NO!
That is not possible!!!

Can we
experiment on
individual bacteria?

Gut microbiome

Which bacteria make me smart ???

NO!

Which bacteria make me smart ???

Gut microbiome

Which bacteria make me smart ???

Gut microbiome

We look at the setting more formally ...

see also: Pfister N. and Peters J. Identifiability of sparse causal effects using

We look at the setting more formally ...

We look at the setting more formally ...

We look at the setting more formally ...

We look at the setting more formally ...

We look at the setting more formally ...

$$
X:=Z \alpha+\epsilon_{x}, \quad Y:=X \beta+\epsilon_{y}, \quad X \not \Perp \epsilon_{y}
$$

Two Stage Least Squares

$$
X:=Z \alpha+\epsilon_{x}, \quad Y:=X \beta+\epsilon_{y}, \quad X \not \Perp \epsilon_{y}
$$

Two Stage Least Squares

$$
X:=Z \alpha+\epsilon_{x}, \quad Y:=X \beta+\epsilon_{y}, \quad X \not \Perp \epsilon_{y}
$$

Two Stage Least Squares

$$
X:=Z \alpha+\epsilon_{x}, \quad Y:=X \beta+\epsilon_{y}, \quad X \not \Perp \epsilon_{y}
$$

Two Stage Least Squares

$$
X:=Z \alpha+\epsilon_{x}, \quad Y:=X \beta+\epsilon_{y}, \quad X \not \Perp \epsilon_{y}
$$

$$
\hat{\beta}_{2 S L S}=\left(\hat{X}^{\top} \hat{X}\right)^{-1} \hat{X}^{\top} y \quad \hat{X}=E[X \mid Z]
$$

Two Stage Least Squares

Two Stage Least Squares

Two Stage Least Squares
 ... and we are done ???

Actually we forgot something ...

Actually we forgot something ...

Unless we have million antibiotics,

A natural machine learning approach :

We use the pseudoinverse...
$\hat{\beta}_{2 S L S}=\left(\hat{X}^{\top} \hat{X}\right)^{-1} \hat{X}^{\top} y$

A natural machine learning approach :

 We use the pseudoinverse...$$
\widehat{P_{\alpha} \beta_{2 S E S}}=\left(\hat{X}^{\top} \hat{X}\right)^{\dagger} \hat{X}^{\top} y
$$

A natural machine learning approach :

 We use the pseudoinverse...

$$
\widehat{P_{\alpha} \beta_{2 S E S}}=\left(\hat{X}^{\top} \hat{X}\right)^{+} \hat{X}^{\top} y
$$

A natural machine learning approach :

 We use the pseudoinverse...

$$
\widehat{P_{\alpha} \beta_{2 S E S}}=\left(\hat{X}^{\top} \hat{X}\right)^{\dagger} \hat{X}^{\top} y
$$

A natural machine learning approach :

 We use the pseudoinverse...

$$
\widehat{P_{\alpha} \beta_{2 S L S}}=\left(\hat{X}^{\top} \hat{X}\right)^{+} \hat{X}^{\top} y
$$

A natural machine learning approach :

 We use the pseudoinverse...

$$
\widehat{P_{\alpha} \beta_{2 S E S}}=\left(\hat{X}^{\top} \hat{X}\right)^{\dagger} \hat{X}^{\top} y
$$

We can add experiments until $\left\|P_{\alpha_{1,2,2}} \beta\right\|=\|\beta\|$

$$
\widehat{P_{\alpha} \beta_{2 S E S}}=\left(\hat{X}^{\top} \hat{X}\right)^{+} \hat{X}^{\top} y
$$

We can add experiments until $\left\|P_{\alpha_{1,2,1}} \beta\right\|=\|\beta\|$

$$
{\widehat{P_{\alpha} \beta_{2 S E S}}}=\left(\hat{X}^{\top} \hat{X}\right)^{+} \hat{X}^{\top} y
$$

We can add experiments until $\left\|P_{\alpha_{1,2,2}} \beta\right\|=\|\beta\|$

$$
\widehat{P_{\alpha} \beta_{2 S E S}}=\left(\hat{X}^{\top} \hat{X}\right)^{\dagger} \hat{X}^{\top} y
$$

We can add experiments until $\left\|P_{\alpha_{1,2}, \ldots} \beta\right\|=\|\beta\|$

$\stackrel{6}{6}$ Experiment number

$$
\widehat{P_{\alpha} \beta_{2 S E S}}=\left(\hat{X}^{\top} \hat{X}\right)^{\dagger} \hat{X}^{\top} y
$$

We can add experiments until $\left\|P_{\alpha_{1,2,1}} \beta\right\|=\|\beta\|$

$$
{\widehat{P_{\alpha} \beta_{2 S E S}}}=\left(\hat{X}^{\top} \hat{X}\right)^{+} \hat{X}^{\top} y
$$

We can add experiments until $\left\|P_{\alpha_{1,2,1}} \beta\right\|=\|\beta\|$

$$
{\widehat{P_{\alpha} \beta_{2 S E S}}}=\left(\hat{X}^{\top} \hat{X}\right)^{+} \hat{X}^{\top} y
$$

We can add experiments until $\left\|P_{\alpha_{1,2,2}} \beta\right\|=\|\beta\|$

$$
{\widehat{P_{\alpha} \beta_{2 S E S}}}=\left(\hat{X}^{\top} \hat{X}\right)^{+} \hat{X}^{\top} y
$$

We can add experiments until $\left\|P_{\alpha_{1,2,2}} \beta\right\|=\|\beta\|$

$$
\widehat{P_{\alpha} \beta_{2 S E S}}=\left(\hat{X}^{\top} \hat{X}\right)^{\dagger} \hat{X}^{\top} y
$$

We can add experiments until $\left\|P_{\alpha_{1,2,2}} \beta\right\|=\|\beta\|$

$$
\widehat{P_{\alpha} \beta_{2 S E S}}=\left(\hat{X}^{\top} \hat{X}\right)^{\dagger} \hat{X}^{\top} y
$$

We can add experiments until $\left\|P_{\alpha_{1,2,2}} \beta\right\|=\|\beta\|$

$$
{\widehat{P_{\alpha} \beta_{2 S E S}}}=\left(\hat{X}^{\top} \hat{X}\right)^{+} \hat{X}^{\top} y
$$

We can add experiments until $\left\|P_{\alpha_{1,2,1}} \beta\right\|=\|\beta\|$

$$
\widehat{P_{\alpha} \beta_{2 S E S}}=\left(\hat{X}^{\top} \hat{X}\right)^{+} \hat{X}^{\top} y
$$

We can add experiments until $\left\|P_{\alpha_{1,2,1}} \beta\right\|=\|\beta\|$

Janzing, D. and Schölkopf, B. Detecting non-causal artifacts in multivariate linear regression models. In

We can add experiments until $\left\|P_{\alpha_{1,2,1}} \beta\right\|=\|\beta\|$

We need to combine the estimators ...

... use the previous experiments as constraints ...

$$
\widehat{P_{\alpha_{2}} \beta}=V_{\alpha_{2}} V_{\alpha_{2}}^{\top} \gamma
$$

... use the previous experiments as constraints ...

$$
\widehat{P_{\alpha_{2}} \beta}=V_{\alpha_{2}} V_{\alpha_{2}}^{\top} \gamma
$$

... and minimise the norm of β

What if
we run out of money before that...?

We still know the effect for some bacteria ...

We still know the effect for some bacteria ...

If $P_{\alpha} e_{i}=e_{i}$ then β_{i} is identified with e_{i} as the standard basis.

Putting it all together ... :

Putting it all together ... :

Single estimator for the underspecified case for one round of
experiments.

Putting it all together ... :

1

Single estimator for the underspecified case for one round of experiments.

2

Combined estimator for the multiple rounds of experiments.

Putting it all together ... :

1

Single estimator for the underspecified case for one round of experiments.

2

Combined estimator for the multiple rounds of experiments.

Putting it all together ... :

1

Single estimator for the underspecified case for one round of experiments.

2

Combined estimator for the multiple rounds of experiments.

Algorithm for sequential selection and a
stopping criterion
for effect identification.

4

Method for checking individual componentidentification.

Putting it all together ... :

1

Single estimator for the underspecified case for one round of experiments.

2

Combined estimator for the multiple rounds of experiments.

Algorithm for sequential selection and a
stopping criterion
for effect identification.

Method for checking individual componentidentification.

Discussion

1. Extension to nonlinear functional relationships: Given the motivational dataset, the linearity assumption is restrictive.
2. How can we interpret a nonlinear instrumented subspace?
3. How can we transfer the confounding strength to nonlinear settings? Do we need a different stopping criterion?
4. Similarity metric, i.e. proposal of instruments: how does this transfer to real world data?

Sequential Underspecified Instrument Selection for CauseEffect Estimation.

Elisabeth Ailer, Jason Hartford, Niki Kilbertus

HELMHOLTZ MUNICIT

- Recursion.

Mila
TII

Appendix

Elisabeth Ailer, Jason Hartford, Niki Kilbertus

Results Sequential Underspecified Instrument Selection

Results Sequential Underspecified Instrument Selection

