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Simple collider X1 X2Y 6

Optimal regressor: f ∗(x1, x2) = E[Y |X1 = x1, X2 = x2]

E[f∗(X1, X2)|X2] = E [E[Y |X1, X2] | X2]

= E[Y | X2] (Tower property)

= E[Y ] (Y ⊥⊥ X2)

= 0 (wlog).

Objective

Find a regressor f̂ : X → Y in hypothesis space F that satisfies

f̂ ∈ {f ∈ F | E[f(X1, X2) | X2] = 0} .
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Collider regression in F = L2(X) F
f∗

P
f̂ P f̂

8

Take P : L2(X) → L2(X),

Pf(x1, x2) = f(x1, x2)− E[f(X1, X2)|X2 = x2].

▶ P is an orthogonal projection

▶ f ∗ ∈ Range(P ) =
{
f ∈ F | E[f(X1, X2) | X2] = 0

}
Proposition

Let h ∈ L2(X), then we have

∆(h, Ph) = E[(Y − h(X))2]− E[(Y − Ph(X))2] = ∥(Id−P )h∥2L2(X).
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Collider regression in a RKHS F = H F
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▶ Reproducing kernel Hilbert space with kernel k(x, x′)
▶ Convenient mathematical properties and dense in L2(X) under mild

assumptions

Theorem

Assume M = supx∈X k(x, x) < ∞ and Var(Y |X) ≥ η > 0. Then, the

generalisation gap between f̂ and P f̂ satisfies

E[∆(f̂ , P f̂)] ≥
ηE

[
∥µX|X2(X)∥2L2(X)

]
(
√
nM + λ/

√
n)

2 (1)

where µX|X2 = E[k(X, ·)|X2] is a RKHS representation of P(X|X2).
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Simulation experiment 11

(a) : Test MSEs for the simulation experiment ; dataset is generated using d1 = 3, d2 = 3,
n = 50 and 100 semi-supervised samples ; experiments is run for 100 datasets generated
with different seeds ; statistical significance is confirmed via Wilcoxon signed-rank ; (b, c,
d) : Ablation study on the number of training samples, number of semi-supervised samples

and dimensionality of X2.



Aerosol radiative forcing experiment 12

Table 1: MSE, signal-to-noise ratio (SNR) and correlation on test data for the aerosol radiative
forcing experiment ; n = 50 and 200 semi-supervised samples ; statistical significance is confirmed
via Wilcoxon signed-rank ; experiments are run for 100 datasets generated by FaIR with different
seeds ; ↑/↓ indicates higher/lower is better; we report 1 standard deviation; † indicates our
proposed methods.

MSE ↓ SNR ↑ Correlation ↑
RF 0.90±0.04 0.44±0.19 0.32±0.08

P -RF† 0.89±0.03 0.49±0.15 0.34±0.07

KRR 0.88±0.04 0.56±0.21 0.37±0.05

P -KRR† 0.86±0.03 0.65±0.14 0.40±0.02

HP -KRR† 0.86±0.03 0.64±0.14 0.39±0.03



Outlooks 13

▶ Collider structures within causal graphs consitute a useful form of inductive bias
within supervised learning

▶ Provable benefit of semi-supervised learning arising from causal structure

▶ Collider regression for more general DAGs in the paper

▶ Similar reasoning can be applied to other forms of inference about P(Y |X), e.g.
classification or quantile regression

To find out more come to our poster:
Poster Session 4, Wednesday 2:00-3:30, Exhibit hall 1.
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