Returning the Favour: When Regression Benefits from Probabilistic Causal Knowledge

Shahine Bouabid^{*1} Jake Fawkes^{*1} Dino Sejdinovic² * Equal contribution ¹ Department of Statistics, University of Oxford ² School of CMS & AIML, University of Adelaide, Adelaide

$$\begin{array}{c|c} \text{Parents} \\ \text{of } Y \end{array} \cup \begin{array}{c} \text{Children} \\ \text{of } Y \end{array} \cup \begin{array}{c} \text{Spouses} \\ \text{of } Y \end{array}$$

$$\begin{array}{c|c} Parents \\ of Y \end{array} \cup \begin{array}{c} Children \\ of Y \end{array} \cup \begin{array}{c} Spouses \\ of Y \end{array}$$
$$= Markov Boundary of Y$$

$$\begin{array}{c|c} Parents \\ of Y \end{array} \cup \begin{array}{c} Children \\ of Y \end{array} \cup \begin{array}{c} Spouses \\ of Y \end{array}$$
$$= Markov Boundary of Y$$

• The Markov Boundary contains all relevant information for $\mathbb{P}(Y|X)$

$$\begin{array}{c|c} Parents \\ of Y \end{array} \cup \begin{array}{c} Children \\ of Y \end{array} \cup \begin{array}{c} Spouses \\ of Y \end{array}$$
$$= Markov Boundary of Y$$

- The Markov Boundary contains all relevant information for $\mathbb{P}(Y|X)$
- X_2 and X_7 do not inform $\mathbb{P}(Y|X)$

$$\begin{array}{c|c} Parents \\ of Y \end{array} \cup \begin{array}{c} Children \\ of Y \end{array} \cup \begin{array}{c} Spouses \\ of Y \end{array}$$
$$= Markov Boundary of Y$$

- The Markov Boundary contains all relevant information for $\mathbb{P}(Y|X)$
- X_2 and X_7 do not inform $\mathbb{P}(Y|X)$

▶ Presence of collider X_6

▶ Presence of collider X_6

• Colliders provide additional information on $\mathbb{P}(Y|X)$ which is unused

 $Y \perp\!\!\!\perp X_2, \qquad Y \not\perp\!\!\!\perp X_2 \mid X_1$

$$Y \perp\!\!\!\perp X_2, \qquad Y \not\perp\!\!\!\perp X_2 \mid X_1$$

Squared-loss regression problem

$$\arg\min_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^{n}\left(y_{i}-f(x_{1i},x_{2i})\right)^{2}+\lambda\Omega(f)$$

 $(Y) \rightarrow (X_1) \leftarrow (X_2) \qquad 6$

Optimal regressor: $f^*(x_1, x_2) = \mathbb{E}[Y|X_1 = x_1, X_2 = x_2]$

 $\mathbb{E}[f^*(X_1, X_2)|X_2]$

 $(Y) \rightarrow (X_1) \leftarrow (X_2) \qquad 6$

$$\mathbb{E}[f^*(X_1, X_2) | X_2] = \mathbb{E}\left[\mathbb{E}[Y | X_1, X_2] \mid X_2\right]$$

 $(Y) \rightarrow (X_1) \leftarrow (X_2) \qquad 6$

$$\mathbb{E}[f^*(X_1, X_2)|X_2] = \mathbb{E}\left[\mathbb{E}[Y|X_1, X_2] \mid X_2\right]$$

= $\mathbb{E}[Y \mid X_2]$ (Tower property)

 $(Y) \rightarrow (X_1) \leftarrow (X_2) \qquad 6$

$$\mathbb{E}[f^*(X_1, X_2) | X_2] = \mathbb{E}\left[\mathbb{E}[Y | X_1, X_2] \mid X_2\right]$$

= $\mathbb{E}[Y \mid X_2]$ (Tower property)
= $\mathbb{E}[Y]$ (Y $\perp \!\!\!\perp X_2$)

 $(Y) \rightarrow (X_1) \leftarrow (X_2) \qquad 6$

$$\mathbb{E}[f^*(X_1, X_2)|X_2] = \mathbb{E}\left[\mathbb{E}[Y|X_1, X_2] \mid X_2\right]$$

= $\mathbb{E}[Y \mid X_2]$ (Tower property)
= $\mathbb{E}[Y]$
= 0 (wlog).

 $(Y) \rightarrow (X_1) \leftarrow (X_2) \qquad 6$

Optimal regressor: $f^*(x_1, x_2) = \mathbb{E}[Y|X_1 = x_1, X_2 = x_2]$

$$\mathbb{E}[f^*(X_1, X_2)|X_2] = \mathbb{E}\left[\mathbb{E}[Y|X_1, X_2] \mid X_2\right]$$

= $\mathbb{E}[Y \mid X_2]$ (Tower property)
= $\mathbb{E}[Y]$ ($Y \perp X_2$)
= 0 (wlog).

Objective

Find a regressor $\hat{f} : \mathcal{X} \to \mathcal{Y}$ in hypothesis space \mathcal{F} that satisfies

$$\hat{f} \in \{f \in \mathcal{F} \mid \mathbb{E}[f(X_1, X_2) \mid X_2] = 0\}.$$

Constraining the hypothesis space \mathcal{F}

$\left\{ f \in \mathcal{F} \mid \mathbb{E}[f(X_1, X_2) \mid X_2] = 0 \right\}$

Constraining the hypothesis space \mathcal{F}

$\{f \in \mathcal{F} \mid \mathbb{E}[f(X_1, X_2) \mid X_2] = 0\} = \operatorname{Range}(P)$

Collider regression in
$$\mathcal{F} = L^2(X)$$

Take $P: L^2(X) \to L^2(X)$,

$$Pf(x_1, x_2) = f(x_1, x_2) - \mathbb{E}[f(X_1, X_2) | X_2 = x_2].$$

Take $P: L^2(X) \to L^2(X)$, $Pf(x_1, x_2) = f(x_1, x_2) - \mathbb{E}[f(X_1, X_2)|X_2 = x_2].$

 \blacktriangleright *P* is an orthogonal projection

Take $P: L^2(X) \to L^2(X)$, $Pf(x_1, x_2) = f(x_1, x_2) - \mathbb{E}[f(X_1, X_2)|X_2 = x_2].$

\blacktriangleright *P* is an orthogonal projection

$$\blacktriangleright f^* \in \operatorname{Range}(P) = \left\{ f \in \mathcal{F} \mid \mathbb{E}[f(X_1, X_2) \mid X_2] = 0 \right\}$$

Take $P: L^2(X) \to L^2(X)$, $Pf(x_1, x_2) = f(x_1, x_2) - \mathbb{E}[f(X_1, X_2)|X_2 = x_2].$

\blacktriangleright P is an orthogonal projection

$$\blacktriangleright f^* \in \operatorname{Range}(P) = \left\{ f \in \mathcal{F} \mid \mathbb{E}[f(X_1, X_2) \mid X_2] = 0 \right\}$$

Proposition

Let $h \in L^2(X)$, then we have

$$\Delta(h, Ph) = \mathbb{E}[(Y - h(X))^2] - \mathbb{E}[(Y - Ph(X))^2] = \|(\mathrm{Id} - P)h\|_{L^2(X)}^2.$$

9

9

▶ Reproducing kernel Hilbert space with kernel k(x, x')

assumptions

Theorem

assumptions

Assume $M = \sup_{x \in \mathcal{X}} k(x, x) < \infty$ and $\operatorname{Var}(Y|X) \ge \eta > 0$. Then, the generalisation gap between \hat{f} and $P\hat{f}$ satisfies

$$\mathbb{E}[\Delta(\hat{f}, P\hat{f})] \ge \frac{\eta \mathbb{E}\left[\|\mu_{X|X_2}(X)\|_{L^2(X)}^2\right]}{\left(\sqrt{n}M + \lambda/\sqrt{n}\right)^2} \tag{1}$$

where $\mu_{X|X_2} = \mathbb{E}[k(X, \cdot)|X_2]$ is a RKHS representation of $\mathbb{P}(X|X_2)$.

 $\mathcal{F} = \mathcal{H}$ with kernel $k(x, x') = \langle k(x, \cdot), k(x', \cdot) \rangle$

 $\mathcal{F} = \mathcal{H}_P$ with kernel $k_P(x, x') = \langle P^*k(x, \cdot), P^*k(x', \cdot) \rangle$

(a) : Test MSEs for the simulation experiment ; dataset is generated using $d_1 = 3$, $d_2 = 3$, n = 50 and 100 semi-supervised samples ; experiments is run for 100 datasets generated with different seeds ; statistical significance is confirmed via Wilcoxon signed-rank ; (b, c, d) : Ablation study on the number of training samples, number of semi-supervised samples and dimensionality of X_2 .

Table 1: MSE, signal-to-noise ratio (SNR) and correlation on test data for the aerosol radiative forcing experiment; n = 50 and 200 semi-supervised samples; statistical significance is confirmed via Wilcoxon signed-rank; experiments are run for 100 datasets generated by FaIR with different seeds; \uparrow/\downarrow indicates higher/lower is better; we report 1 standard deviation; \dagger indicates our proposed methods.

	$\mathrm{MSE}\downarrow$	$\mathrm{SNR}\uparrow$	Correlation \uparrow
\mathbf{RF}	$0.90{\pm}0.04$	$0.44 {\pm} 0.19$	$0.32{\pm}0.08$
$P\text{-}\mathrm{RF}^{\dagger}$	$0.89{\scriptstyle \pm 0.03}$	$0.49{\scriptstyle \pm 0.15}$	$0.34{\scriptstyle \pm 0.07}$
\mathbf{KRR}	$0.88{\pm}0.04$	$0.56{\scriptstyle\pm0.21}$	$0.37{\pm}0.05$
P-KRR [†]	$0.86{\scriptstyle \pm 0.03}$	$0.65{\scriptstyle \pm 0.14}$	$0.40{\scriptstyle \pm 0.02}$
${\cal H}_P$ -KRR [†]	$0.86{\scriptstyle \pm 0.03}$	$0.64{\scriptstyle \pm 0.14}$	$0.39{\pm}0.03$

 Collider structures within causal graphs consitute a useful form of inductive bias within supervised learning

- Collider structures within causal graphs consitute a useful form of inductive bias within supervised learning
- ▶ Provable benefit of semi-supervised learning arising from causal structure

- Collider structures within causal graphs consitute a useful form of inductive bias within supervised learning
- ▶ Provable benefit of semi-supervised learning arising from causal structure
- ▶ Collider regression for more general DAGs in the paper

- Collider structures within causal graphs consitute a useful form of inductive bias within supervised learning
- ▶ Provable benefit of semi-supervised learning arising from causal structure
- ▶ Collider regression for more general DAGs in the paper
- Similar reasoning can be applied to other forms of inference about $\mathbb{P}(Y|X)$, e.g. classification or quantile regression