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Squared-loss regression problem

n

arg min 1 Z (yi — f(x1, 172z'))2 + A f)

n
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Optimal regressor: f*(z1,29) = E[Y|X) = 21, X5 = x4

E[f* (X1, X2)| Xo] = E[E[Y| X7, Xo] | Xo]
=E[Y | X;] (Tower property)
=0 (wlog).

Objective
Find a regressor f: X — ) in hypothesis space F that satisfies

fe{feF|Ef(Xi,Xa)]| Xs] =0}.
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Collider regression in F = L*(X)




Collider regression in F = L*(X) 8

Take P: L*(X) — L*(X),
Pf(x1,22) = f(z1,72) — E[f (X3, X2)| X = z4].



Collider regression in F = L*(X) 8

Take P: L*(X) — L*(X),
Pf(x1,22) = f(z1,72) — E[f (X3, X2)| X = z4].

» P is an orthogonal projection



Collider regression in F = L*(X) 8

Take P: L*(X) — L*(X),
Pf(x1,22) = f(z1,72) — E[f (X3, X2)| X = z4].

» P is an orthogonal projection
> f* € Range(P) = {f € F|E[f(X1,X2) | Xo] = O}



Collider regression in F = L*(X) 8

Take P: L*(X) — L*(X),
Pf(x1,22) = f(z1,72) — E[f (X3, X2)| X = z4].

» P is an orthogonal projection
> f* € Range(P) = {f € F | E[f(X1, X2) | Xo] = O}

Proposition
Let h € L*(X), then we have
A(h, Ph) = E[(Y — h(X))*] = E[(Y — Ph(X))*] = |(1d =P)h 72 x).
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» Reproducing kernel Hilbert space with kernel k(z, 2’)
» Convenient mathematical properties and dense in L?(X) under mild
assumptions

Theorem

Assume M = sup,cy k(z,2) < oo and Var(Y|X) > n > 0. Then, the
generalisation gap between f and P f satisfies
U]E[HMXle(X)H%Q(X)]

(VM + X/+/n)”
where jix|x, = E[k(X, )| X,] is a RKHS representation of P(X|X5).

E[A(f, P)] > (1)
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F = Hp with kernel kp(z, 2') = (P*k(x, ), P*k(Z',-))
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(a) Test MSE | (b) Number of training samples (c) Number of semi-supervised samples

(a) : Test MSEs for the simulation experiment ; dataset is generated using d; = 3, ds = 3,
n = 50 and 100 semi-supervised samples ; experiments is run for 100 datasets generated
with different seeds ; statistical significance is confirmed via Wilcoxon signed-rank ; (b, c,
d) : Ablation study on the number of training samples, number of semi-supervised samples
and dimensionality of Xs.



Aerosol radiative forcing experiment
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Table 1: MSE, signal-to-noise ratio (SNR) and correlation on test data for the aerosol radiative
forcing experiment ; n = 50 and 200 semi-supervised samples ; statistical significance is confirmed
via Wilcoxon signed-rank ; experiments are run for 100 datasets generated by FalR with different
seeds ; 1/ indicates higher/lower is better; we report 1 standard deviation; { indicates our

proposed methods.

RF
P-RFt
KRR
P-KRRf
Hp-KRRT

MSE |
0.90+0.04
0.89+0.03
0.88+0.04
0.86+0.03
0.86+0.03

SNR ¢
0.44+0.19
0.49+0.15
0.56+0.21
0.65+0.14
0.64+0.14

Correlation 1
0.32+0.08
0.34+0.07
0.37+0.05
0.40+0.02
0.39+0.03
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Collider structures within causal graphs consitute a useful form of inductive bias
within supervised learning

Provable benefit of semi-supervised learning arising from causal structure
Collider regression for more general DAGs in the paper

Similar reasoning can be applied to other forms of inference about P(Y|X), e.g.
classification or quantile regression

To find out more come to our poster:
Poster Session 4, Wednesday 2:00-3:30, Exhibit hall 1.



