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Background

@ Scaling conventional deep models

» Linear increase of training cost with model parameters
e Mixture-of-Experts (MoE)

» Only sublinear increase of training cost!

"Noam Shazeer et al. (2017). “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts
Layer”. In: International Conference on Learning Representations.
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Background

@ Routing in MoE
» Sample-level Routing?®

?Prajit Ramachandran and Quoc V Le (2019). “Diversity
and depth in per-example routing models”. In: International
Conference on Learning Representations.

bBrandon Yang et al. (2019). “Condconv: Conditionally
parameterized convolutions for efficient inference”. In:
Advances in Neural Information Processing Systems 32.

Sample-level MoE
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Background

@ Routing in MoE
» Patch-level Routing

* Patch-wise Routing®®
* Expert-choice Routing®

William Fedus, Barret Zoph, and Noam Shazeer (2022). 2
“Switch transformers: Scaling to trillion parameter models | EE BAET
with simple and efficient sparsity”. In: The Journal of
Machine Learning Research 23.1, pp. 5232-5270.

bCarlos Riquelme et al. (2021). “Scaling vision with sparse
mixture of experts”. In: Advances in Neural Information
Processing Systems 34, pp. 8583—-8595.

“Yanqi Zhou et al. (2022). “Mixture-of-experts with
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expert choice routing”. In: Advances in Neural Information Ilii
A

Processing Systems 35, pp. 7103-7114.

Patch-level MoE (Expert-choice) (pMoE)
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Motivation

e Patch-level MoE (pMoE)

» Significant empirical success, but no theoretical guarantee

o Compared to conventional models:

» Why does pMoE provide similar generalization with low compute?
» How much computational resource does pMoE save?

Chowdhury, M.N.R., Zhang, S., Wang, M., Liu, S., Chen, P.Y. PMOoE is Provably Sample-efficient for CNN 5/ 14



Contributions

@ First convergence and generalization analysis of pMoE for CNN
» Polynomial reduction of time, sample, and model complexity

@ Characterization of the desired property of the pMoE router

@ Experimental demonstration of sample efficiency of pMoE in deep CNN models
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Setup for Theoretical Analysis

@ Binary supervised classification
e Given: N i.i.d. training samples {(x;, y;)}, generated by a unknown distribution D
@ Goal: To learn a NN model that can map x to y (y € {+1,—1}) for any (x,y) ~ D

@ The analyzed pMoE model: Two-layer mixture of CNNs

k m/k

ars j
(0, x) = Z /' Z ReLU(<Wr,57X(J)>)GJ}S(X)
s=1 r= jEJs(W57X)

» Each input x € R": divided into n disjoint patches, x{) ® O (O
denotes j-th patch L o [2]s ]« o]

» k experts and k corresponding routers, each selecting / out The analyzed model
of n patches (/ < n)
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Setup for Theoretical Analysis

Two modes of training:

» Separate training of the routers and experts t

» Joint training of the routers and experts
@ Loss Function: Binary cross-entropy \ x J
e Training Algorithm: SGD T y=—1
e Data model: Among the n patches of a sample (x, y) %

» one class-discriminative pattern |
* denoted as o1, if y = +1

* denoted as 0z, if y = —1 X

» (n-1) class-irrelevant patches

Data model
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Theoretical Results: Router Property

‘ Expert 1 ’ ‘ Expert 2 J
@ Sends similar class-discriminative patches to the s=1 s=2
same expert n > §
> 07 to Expert 1 g
> 0; to Exzert 2 - ]
@ Drop class-irrelevant patches — ~
» Efficient learning in experts [ —— - m\
e Sample complexity: Q(n?) (Separate training) y=+1 y=-1

The proved router property
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Theoretical Results: Complexity

To achieve ¢ pMoE Savings in pMoE
i:arr:)eiralization CNN S;:;?"}i? Join training St‘::i?]"i:? Jomt traiing
Sape Com L ae) | a@/ae) | awiean) | e/ | ek
'ctiiiﬂfélity O(n' /¢%) O(1*/€®) O(K2P2/€®) o(n*/1*) | e(n*/k2P)
m:g;l, Com- Q(n'0/e') Q(I10/€®) Q(k3n?1°/€1°) O(n0/119) | ©(n'0/Kk3n2/5)
EEEE?ZZE?“' O(Bmn®d/®) | O(BmIPd/e®) | O(Bmk*FPd/e®) || ©(n°/F) | ©(n°/kP)
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Theoretical Results: Complexity

To achieve ¢ pMoE Savings in pMoE
i:arr:)eiralization CNN S;:;?"}i? Join training St‘::i?]"i:? Jomt traiing
§1T.i’f o1 ag /o) Q(18 /') Q(K*19/€19) o(n®/B) | ©(n/k*I)
'EZEEIZ’LW O(n' /¢%) O(1*/€®) O(K2P2/€®) o(n*/1* | e(n*/Kk2P)
II:/ll;c:;I/ Com- Q(n10/€9) Q(/0/€9) Q(k3n2/6/16) O(n®/119) | ©(n'0/Kk3n2/5)
EZEE:L&?E?“' O(Bmn®d/®) | O(BmIPd/e®) | O(Bmk*FPd/e®) || ©(n°/P) | ©(n°/kP)

Chowdhury, M.N.R., Zhang, S., Wang, M., Liu, S., Chen, P.Y.

PMOoE is Provably Sample-efficient for CNN

11/ 14



Experimental Results: pMoE of Two-layer CNN

@ MNIST characters are used as patterns (I)
@ pMoE saves almost half of the training samples used for CNN (I1)
@ poly(/) sample complexity verified (I11)
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Experimental Results: pMoE of Wide Residual Networks (WRN)
@ 10 layers, Widening factor of 10
o Dataset: CelebA; Multiclass classification
o WRN-pMoE saves
» 60% of the training samples (1)
» 50% of the training FLOPs (II)
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