Patch-level Routing in Mixture-of-Experts is Provably Sample-efficient for Convolutional Neural Networks

Mohammed Nowaz Rabbani Chowdhury ¹, Shuai Zhang ¹, Meng Wang ¹, Sijia Liu^{2,3}, Pin-Yu Chen³

¹Rensselaer Polytechnic Institute

²Michigan State University

³IBM Research

International Conference on Machine Learning (ICML 2023) July, 2023

Background

- Scaling conventional deep models
 - Linear increase of training cost with model parameters
- Mixture-of-Experts (MoE)
 - Only sublinear increase of training cost¹

¹Noam Shazeer et al. (2017). "Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer". In: *International Conference on Learning Representations*.

Background

- Routing in MoE
 - ► Sample-level Routing^{ab}

^aPrajit Ramachandran and Quoc V Le (2019). "Diversity and depth in per-example routing models". In: *International Conference on Learning Representations*.

^bBrandon Yang et al. (2019). "Condconv: Conditionally parameterized convolutions for efficient inference". In: *Advances in Neural Information Processing Systems* 32.

Sample-level MoE

Background

- Routing in MoE
 - Patch-level Routing
 - ★ Patch-wise Routing^{ab}
 - \star Expert-choice Routing^c

^aWilliam Fedus, Barret Zoph, and Noam Shazeer (2022). "Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity". In: *The Journal of Machine Learning Research* 23.1, pp. 5232–5270.

^bCarlos Riquelme et al. (2021). "Scaling vision with sparse mixture of experts". In: *Advances in Neural Information Processing Systems* 34, pp. 8583–8595.

^cYanqi Zhou et al. (2022). "Mixture-of-experts with expert choice routing". In: *Advances in Neural Information Processing Systems* 35, pp. 7103–7114.

Patch-level MoE (Expert-choice) (pMoE)

Motivation

- Patch-level MoE (pMoE)
 - Significant empirical success, but no theoretical guarantee
- Compared to conventional models:
 - Why does pMoE provide similar generalization with low compute?
 - How much computational resource does pMoE save?

Contributions

- First convergence and generalization analysis of pMoE for CNN
 - Polynomial reduction of time, sample, and model complexity
- Characterization of the desired property of the pMoE router
- Experimental demonstration of sample efficiency of pMoE in deep CNN models

Setup for Theoretical Analysis

- Binary supervised classification
- Given: N i.i.d. training samples $\{(x_i, y_i)\}_{i=1}^N$ generated by a unknown distribution \mathcal{D}
- Goal: To learn a NN model that can map x to y $(y \in \{+1, -1\})$ for any $(x, y) \sim D$
- The analyzed pMoE model: Two-layer mixture of CNNs

$$f_{\mathcal{M}}(\theta, x) = \sum_{s=1}^{k} \sum_{r=1}^{m/k} \frac{a_{r,s}}{l} \sum_{j \in J_{s}(w_{s}, x)} \operatorname{ReLU}(\langle w_{r,s}, x^{(j)} \rangle) G_{j,s}(x)$$

- ► Each input x ∈ ℝnd: divided into n disjoint patches, x^(j) denotes j-th patch
- ▶ k experts and k corresponding routers, each selecting / out of n patches (l < n)</p>

Setup for Theoretical Analysis

- Two modes of training:
 - Separate training of the routers and experts
 - Joint training of the routers and experts
- Loss Function: Binary cross-entropy
- Training Algorithm: SGD
- Data model: Among the *n* patches of a sample (*x*, *y*)
 - one class-discriminative pattern
 - * denoted as o_1 , if y = +1
 - * denoted as o_2 , if y = -1
 - (n-1) class-irrelevant patches

Data model

Theoretical Results: Router Property

- Sends similar class-discriminative patches to the same expert
 - ▶ *o*₁ to Expert 1
 - ► *o*₂ to Expert 2
- Drop class-irrelevant patches
 - Efficient learning in experts
- Sample complexity: $\Omega(n^2)$ (Separate training)

The proved router property

Theoretical Results: Complexity

To achieve ϵ generalization error	CNN	рМоЕ		Savings in pMoE	
		Separate training	Joint training	Separate training	Joint training
Sample Com- plexity	$\Omega(n^8/\epsilon^{16})$	$\Omega(l^8/\epsilon^{16})$	$\Omega(k^4 l^6/\epsilon^{16})$	$\Theta(n^8/l^8)$	$\Theta(n^8/k^4l^6)$
Iteration Complexity	$O(n^4/\epsilon^8)$	$O(l^4/\epsilon^8)$	$O(k^2 l^2/\epsilon^8)$	$\Theta(n^4/l^4)$	$\Theta(n^4/k^2l^2)$
Model Com- plexity	$\Omega(n^{10}/\epsilon^{16})$	$\Omega(I^{10}/\epsilon^{16})$	$\Omega(k^3n^2l^6/\epsilon^{16})$	$\Theta(n^{10}/l^{10})$	$\Theta(n^{10}/k^3n^2l^6)$
Computational Complexity	$O(Bmn^5d/\epsilon^8)$	$O(Bml^5d/\epsilon^8)$	$O(Bmk^2l^3d/\epsilon^8)$	$\Theta(n^5/l^5)$	$\Theta(n^5/k^2l^3)$

Theoretical Results: Complexity

To achieve ϵ generalization error	CNN	рМоЕ		Savings in pMoE	
		Separate training	Joint training	Separate training	Joint training
Sample Com- plexity	$\Omega(n^8/\epsilon^{16})$	$\Omega(l^8/\epsilon^{16})$	$\Omega(k^4 l^6/\epsilon^{16})$	$\Theta(n^8/l^8)$	$\Theta(n^8/k^4l^6)$
Iteration Complexity	$O(n^4/\epsilon^8)$	$O(l^4/\epsilon^8)$	$O(k^2 l^2/\epsilon^8)$	$\Theta(n^4/l^4)$	$\Theta(n^4/k^2l^2)$
Model Com- plexity	$\Omega(n^{10}/\epsilon^{16})$	$\Omega(I^{10}/\epsilon^{16})$	$\Omega(k^3n^2l^6/\epsilon^{16})$	$\Theta(n^{10}/l^{10})$	$\Theta(n^{10}/k^3n^2l^6)$
Computational Complexity	$O(Bmn^5d/\epsilon^8)$	$O(Bml^5d/\epsilon^8)$	$O(Bmk^2l^3d/\epsilon^8)$	$\Theta(n^5/l^5)$	$\Theta(n^5/k^2l^3)$

Experimental Results: pMoE of Two-layer CNN

- MNIST characters are used as patterns (I)
- pMoE saves almost *half* of the training samples used for CNN (II)
- *poly(1)* sample complexity verified (III)

Experimental Results: pMoE of Wide Residual Networks (WRN)

- 10 layers, Widening factor of 10
- Dataset: CelebA; Multiclass classification
- WRN-pMoE saves
 - ▶ 60% of the training samples (I)
 - ► 50% of the training FLOPs (II)

Chowdhury, M.N.R., Zhang, S., Wang, M., Liu, S., Chen, P.Y.

References

- Fedus, William, Barret Zoph, and Noam Shazeer (2022). "Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity". In: *The Journal of Machine Learning Research* 23.1, pp. 5232–5270.
- Ramachandran, Prajit and Quoc V Le (2019). "Diversity and depth in per-example routing models". In: *International Conference on Learning Representations*.
- Riquelme, Carlos et al. (2021). "Scaling vision with sparse mixture of experts". In: Advances in Neural Information Processing Systems 34, pp. 8583–8595.
- Shazeer, Noam et al. (2017). "Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer". In: International Conference on Learning Representations.
- Yang, Brandon et al. (2019). "Condconv: Conditionally parameterized convolutions for efficient inference". In: Advances in Neural Information Processing Systems 32.
- Zhou, Yanqi et al. (2022). "Mixture-of-experts with expert choice routing". In: Advances in Neural Information Processing Systems 35, pp. 7103–7114.