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Background

Scaling conventional deep models
▶ Linear increase of training cost with model parameters

Mixture-of-Experts (MoE)
▶ Only sublinear increase of training cost1

1Noam Shazeer et al. (2017). “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts
Layer”. In: International Conference on Learning Representations.
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Background

Routing in MoE
▶ Sample-level Routingab

aPrajit Ramachandran and Quoc V Le (2019). “Diversity
and depth in per-example routing models”. In: International
Conference on Learning Representations.

bBrandon Yang et al. (2019). “Condconv: Conditionally
parameterized convolutions for efficient inference”. In:
Advances in Neural Information Processing Systems 32.

Sample-level MoE
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Background

Routing in MoE
▶ Patch-level Routing

⋆ Patch-wise Routingab

⋆ Expert-choice Routingc

aWilliam Fedus, Barret Zoph, and Noam Shazeer (2022).
“Switch transformers: Scaling to trillion parameter models
with simple and efficient sparsity”. In: The Journal of
Machine Learning Research 23.1, pp. 5232–5270.

bCarlos Riquelme et al. (2021). “Scaling vision with sparse
mixture of experts”. In: Advances in Neural Information
Processing Systems 34, pp. 8583–8595.

cYanqi Zhou et al. (2022). “Mixture-of-experts with
expert choice routing”. In: Advances in Neural Information
Processing Systems 35, pp. 7103–7114.

Patch-level MoE (Expert-choice) (pMoE)
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Motivation

Patch-level MoE (pMoE)
▶ Significant empirical success, but no theoretical guarantee

Compared to conventional models:
▶ Why does pMoE provide similar generalization with low compute?
▶ How much computational resource does pMoE save?
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Contributions

First convergence and generalization analysis of pMoE for CNN
▶ Polynomial reduction of time, sample, and model complexity

Characterization of the desired property of the pMoE router
Experimental demonstration of sample efficiency of pMoE in deep CNN models
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Setup for Theoretical Analysis

Binary supervised classification
Given: N i.i.d. training samples {(xi , yi )}Ni=1 generated by a unknown distribution D
Goal: To learn a NN model that can map x to y (y ∈ {+1,−1}) for any (x , y) ∼ D

The analyzed pMoE model: Two-layer mixture of CNNs

fM(θ, x) =
k∑

s=1

m/k∑
r=1

ar ,s
l

∑
j∈Js(ws ,x)

ReLU(⟨wr ,s , x
(j)⟩)Gj ,s(x)

▶ Each input x ∈ Rnd : divided into n disjoint patches, x (j)

denotes j-th patch
▶ k experts and k corresponding routers, each selecting l out

of n patches (l < n)
The analyzed model
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Setup for Theoretical Analysis

Two modes of training:
▶ Separate training of the routers and experts
▶ Joint training of the routers and experts

Loss Function: Binary cross-entropy
Training Algorithm: SGD
Data model: Among the n patches of a sample (x , y)

▶ one class-discriminative pattern
⋆ denoted as o1, if y = +1
⋆ denoted as o2, if y = −1

▶ (n-1) class-irrelevant patches
Data model
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Theoretical Results: Router Property

Sends similar class-discriminative patches to the
same expert

▶ o1 to Expert 1
▶ o2 to Expert 2

Drop class-irrelevant patches
▶ Efficient learning in experts

Sample complexity: Ω(n2) (Separate training)
The proved router property
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Theoretical Results: Complexity

pMoE Savings in pMoETo achieve ϵ
generalization
error

CNN Separate
training Joint training Separate

training Joint training

Sample Com-
plexity Ω(n8/ϵ16) Ω(l8/ϵ16) Ω(k4l6/ϵ16) Θ(n8/l8) Θ(n8/k4l6)

Iteration
Complexity O(n4/ϵ8) O(l4/ϵ8) O(k2l2/ϵ8) Θ(n4/l4) Θ(n4/k2l2)

Model Com-
plexity Ω(n10/ϵ16) Ω(l10/ϵ16) Ω(k3n2l6/ϵ16) Θ(n10/l10) Θ(n10/k3n2l6)

Computational
Complexity O(Bmn5d/ϵ8) O(Bml5d/ϵ8) O(Bmk2l3d/ϵ8) Θ(n5/l5) Θ(n5/k2l3)
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Experimental Results: pMoE of Two-layer CNN
MNIST characters are used as patterns (I)
pMoE saves almost half of the training samples used for CNN (II)
poly(l) sample complexity verified (III)

(I)

(II)
(III)
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Experimental Results: pMoE of Wide Residual Networks (WRN)
10 layers, Widening factor of 10
Dataset: CelebA; Multiclass classification
WRN-pMoE saves

▶ 60% of the training samples (I)
▶ 50% of the training FLOPs (II)

(I) (II)
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