Fast Inference from Transformers via Speculative Decoding

Yaniv Leviathan, Matan Kalman, Yossi Matias

ICML 2023

The Gist

- Decode faster from autoregressive models: **2X-3X** in typical scenarios.
- Only different decoding algorithm: **no architecture changes**, **no re-training**.
- Identical output distribution.

For Autoregressive Models...

Decoding K tokens takes K serial runs.

Can we somehow decode several tokens in parallel?

Observation 1

Some tokens are easier than others.

Hebrew: הנשיא היה ברק אובמה. English: The president was Barack Obama.

Hard - e.g. requires looking several tokens back, knowledge of hebrew, ...

Easy - e.g. can guess based on just the last token.

Decoding from large Transformers is memory bound.

Hardware can do	Transformers need		
XXX	X		
Floating point operations per byte read	Floating point operations per byte read		

Contribution 1: Speculative Sampling

Generalization of Speculative Execution to the Stochastic Setting

Speculative Execution

Given **slow** functions f(X) and g(Y):

Y = f(X)

Z = g(Y)

And given any approximation $f^{*}(X)$ to f(X),

Compute f(X) and g(f*(X)) in parallel.

Guarantee identical outputs by rejecting if $f(X) \neq f^*(X)$.

Speculative Sampling

Given **slow** functions f(X) and g(Y):

 $Y \sim f(X)$

Z = g(Y)

And given any approximation $f^{*}(X)$ to f(X),

Compute f(X) and g(sample(f*(X))) in parallel.

Guarantee identical distribution by rejecting w/ some probability (f(X), f*(X)).

Contribution 2: Speculative Decoding

Application of Speculative Sampling to Decoding from Autoregressive Models

Speculative Decoding

M - auto-regressive model

1
$$x_{\leq t} = decode_{M}(x_{\leq t-1})$$
 # f(X)
2 $x_{\leq t+1} = decode_{M}(x_{\leq t})$ # g(Y)

Theoretical Highlight 1: Latency Improvement Prediction

The **latency improvement** is a function of:

- How close the approximation model is to the target model (α).
- How fast the approximation model is relative to the target model (c).

Theoretical Highlight 2: Number of Parallel Tokens

We can apply speculative sampling to a **sequence** of slow functions.

We can apply speculative decoding to decode **several** tokens in parallel.

Optimally choosing the number of tokens to attempt to parallelize (γ).

Even off-the-shelf small models or simple heuristics work well.

Table 2. Empirical results for speeding up inference from a T5-XXL 11B model.

TASK	M_q	TEMP	γ	lpha	Speed
EnDe	T5-small ★	0	7	0.75	3.4X
ENDE	T5-base	0	7	0.8	2.8X
ENDE	T5-LARGE	0	7	0.82	1.7X
ENDE	T5-small ★	1	7	0.62	2.6X
ENDE	T5-BASE	1	5	0.68	2.4X
EnDe	T5-LARGE	1	3	0.71	1.4X
CNNDM	T5-small ★	0	5	0.65	3.1X
CNNDM	T5-base	0	5	0.73	3.0X
CNNDM	T5-LARGE	0	3	0.74	2.2X
CNNDM	T5-small ★	1	5	0.53	2.3X
CNNDM	T5-BASE	1	3	0.55	2.2X
CNNDM	T5-LARGE	1	3	0.56	1.7X

Thank you!

leviathan@google.com