On the Power of Pre-training for Generalization in RL: Provable Benefits and Hardness Haotian Ye^{*}, Xiaoyu Chen^{*}, Liwei Wang, Simon S. Du

ICML Oral Presentation <u>Poster 6</u> (Exhibit Hall 1 #430)

Standard Reinforcement Learning

- Setting: An agent interacts with an unknown environment *M*.
- Goal: Maximize expected cumulative rewards.
- We consider the Markov Decision Processes environments, where the state space and the action space is finite.

Half-Cheetah

Beyond Standard RL: Generalization in RL

- Motivation: In practice, tests environments are *different* from training environments.
- We hope the agent can learn meaningful skills in the training stage and be robust to the variation during the test stage.
- Example: autonomous driving, robotics, health care ...

Generalization in RL v.s. Generalization in Supervised learning

Generalization in supervised learning

Setting: data distribution \mathbb{D} , loss function l

Training: collect a dataset $(x_i, y_i)_{i=1}^n$ sampled from \mathbb{D} , find \hat{h} that performs well on the set

Testing: sample a test dataset, evaluate the performance of \hat{h} on the set

measure: optimality in expectation $\mathbb{E}_{\mathbb{D}}\left[l\left(\hat{h}(x,y)\right)\right] - \min_{h} \mathbb{E}_{\mathbb{D}}\left[l(h(x,y))\right]$ Generalization in reinforcement learning

Setting: MDP distribution \mathbb{D}

Training: collect a MDP set $(\mathcal{M}_i)_{i=1}^n$ sampled from \mathbb{D} , find $\hat{\pi}$ that performs well on the set

Testing: sample a test MDP $\mathcal M$ from $\mathbb D,$ interacts with the MDP according to policy $\hat\pi$

measure: optimality in instance $\mathbb{E}_{\mathcal{M}\sim\mathbb{D}}\left[\max_{\pi}V_{\mathcal{M}}^{\pi}-V_{\mathcal{M}}^{\widehat{\pi}}\right]$

Instance optimality is required in RL generalization!

Impossibility of Instance Optimality

- Unfortunately, without interacting with the test MDP, it is impossible to pursue an instance optimal policy.
- Example: D is a Bernoulli distribution.
 - Both MDPs have 3 states and 2 actions.
 - In \mathcal{M}_1 , $R(a_1) = 1$, $R(a_2) = 0$.
 - In \mathcal{M}_2 , $R(a_1) = 0$, $R(a_2) = 1$.
- A better formulation is required!

Problem Formulation of RL Generalization (Informal)

- Measure: Compared to directly interact with \mathcal{M} , can pre-training help reduce Reg?
- Intuition: Training on $(\mathcal{M}_i)_{i=1}^n$ provides information of \mathbb{D} .
- Question: How much can the information obtained from pretraining help *reduce* the *K* episode regret suffered during the test stage?

Setting: MDP distribution \mathbb{D}

Pre-training: collect a MDP set $(\mathcal{M}_i)_{i=1}^n$ from \mathbb{D} , pretrained a model \mathcal{F}

Fine-tuning: sample a test MDP \mathcal{M} from \mathbb{D} , fine-tune in the test MDP for *K* episodes

measure: Reg =
$$\sum_{k=1}^{K} \left[\max_{\pi} V_{\mathcal{M}}^{\pi} - V_{\mathcal{M}}^{\mathcal{F}(\text{history})} \right]$$

Negative Result (Informal)

• Theorem:

Knowing the distribution is useless up to a constant, i.e. $\liminf_{K \to \infty} \frac{\operatorname{Reg}_{K}(\mathbb{D}, \mathcal{A}(\mathbb{D}, K))}{\operatorname{Reg}_{K}(\mathbb{D}, \hat{\mathcal{A}}(K))} \geq c_{0}.$

- Intuition:
 - We can *at most* learn the entire distribution \mathbb{D} , but cannot know the test environment \mathcal{M} *exactly*.
 - After more interactions with \mathcal{M} , the value of pretraining *decreases* relatively.
 - Consequently, the helpfulness of pretraining is bounded asymptotically.

Positive Result: Fine-tuning Algorithm

- On the contrary, the improvement in the non-asymptotic setting is achievable.
- Algorithm PCE: collect a minimum nearoptimal policy set Π that generalizes to most of MDPs in D.
- Advantages:
 - Reduce regret dependence from |S|, |A| to $|\Pi|$, which depends on the complexity of \mathbb{D} .
 - Regret can still be small even when the MDP support is *infinite*.
 - The idea of finding a policy covering set is could be helpful in practice.

Algorithm PCE (Policy Collection-Elimination)

Pre-training: find a policy set $\widehat{\Pi}$ covering distribution $\mathbb D$

Fine-tuning: given a sampled MDP \mathcal{M}^* , find a policy in $\widehat{\Pi}$ for \mathcal{M}^* by elimination

Summary & Takeaways

Allow fine-tuning	Setting	Optimality in instance	Optimality in expectation
×	Non-asymptotic	Linear in K	$\operatorname{Poly}(S, A, H)\sqrt{K}$
\checkmark	Asymptotic	$\operatorname{Poly}(S, A, H)\sqrt{K}$	-
\checkmark	Non-asymptotic	$O(C(\mathbb{D})\sqrt{K})$	-

- When fine-tuning is not allowed, instance optimality is impossible in RL generalization.
- Even when fine-tuning is allowed, the regret can not be substantially reduced in the asymptotic setting.
- However, when *K* is fixed (non-asymptotic), the dependence of |*S*|, |*A*| can be removed using the idea of policy covering.

Thanks!

ICML Oral Presentation
<u>Poster 6</u> (Exhibit Hall 1 #430)