

### Bidirectional Adaptation for Robust Semi-Supervised Learning with Inconsistent Data Distributions

Lin-Han Jia<sup>1</sup>, Lan-Zhe Guo<sup>1</sup>, Zhi Zhou<sup>1</sup>, Jie-Jing Shao<sup>1</sup>, Yu-Ke Xiang<sup>2</sup>, Yu-Feng Li<sup>1</sup>

<sup>1</sup>National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China <sup>2</sup>Consumer BG, Huawei Technologies, Shenzhen, China

Presented by: Lin-Han Jia 2023.06.21

### 



#### Semi-Supervised Learning

- Machine learning relies on a large amount of labeled data.
- Semi-supervised learning can effectively utilize unlabeled data.
- It has a limited scope and relies on the same distribution between labeled and unlabeled data.
- There is a risk of significant performance degradation in real-world applications.

#### Robust Semi-Supervised Learning

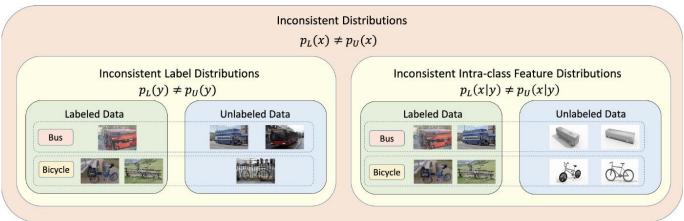
- Utilizing a large amount of unlabeled data that has a different distribution from the current labeled data for learning.
- The goal is to ensure that the semi-supervised algorithm does not perform too poorly in real-world applications.
- This extends the applicability of classical semi-supervised learning.
- It reduces the risk associated with using semi-supervised learning algorithms.

### 



#### Inconsistent Distributions

- We can only observe that the feature distributions of unlabeled and labeled data are inconsistent.
- Inconsistent feature distributions are equivalent to a combination of inconsistent class distributions and inconsistent intra-class feature distributions.
- Inconsistent distributions between labeled and unlabeled data lead to low quality of pseudo-labels.
- Inconsistent distributions between unlabeled data and target data result in poor performance and weak robustness of the learner.



### **D**Theoretical Research

#### Generalization Error

- Bias of pseudo-label predictions.
- Variance of pseudo-label predictions.
- Distribution distance caused by pseudo-label predictions.
- Bias of target predictions.
- Variance of target predictions.
- Distribution distance caused by target predictions.

### Optimization Object

- Bias and distribution distance of pseudo-label predictions.
- Bias and distribution distance of target predictions
- Objective conflict.
- Objective can be decoupled.

**Theorem 3.4.** Assuming that the probabilities of the pseudolabel predictor making wrong predictions for each sample are equal without considering the difference among them, for any target predictor  $f \in \mathcal{F}$ , pseudo-label predictor  $h \in \mathcal{H}, 0 \le \delta_1 \le 1, 0 \le \delta_2 \le 1$  and  $0 \le \delta_3 \le 1$ , with the probability of at least  $(1 - \delta_1)(1 - \delta_2)(1 - \delta_3)$ :

$$E(f, \mathcal{D}_T | h, D_L, D_U) \leq \frac{n_l}{n_l + n_u^w} \hat{E}(f, D_L)$$

$$+ \frac{n_u^w}{n_l + n_u^w} \hat{E}(f, \tilde{D}_U^w) + var(\mathcal{F}, n_l + n_u^w, k, \delta_1)$$

$$+ Disc(f, \mathcal{D}_T, Mix_{\frac{n_l}{n_l + n_u^w}} (\mathcal{D}_L, \mathcal{D}_U^w))$$

$$+ \frac{n_u^w}{n_l + n_u^w} (\hat{E}(h, D_L) + var(\mathcal{H}, n_l, k, \delta_2)$$

$$+ var(\mathcal{H}, n_u, k, \delta_3) + Disc(h, \mathcal{D}_L, \mathcal{D}_U))$$
(7)

where  $\hat{E}(f, \tilde{D}_{U}^{w})$  is the weighted disagreement rate between the noisy pseudo-labels and the prediction results of f on the unlabeled dataset  $\tilde{D}_{U}$ .

$$\begin{split} & \min_{f \in \mathcal{F}, h \in \mathcal{H}} [\frac{n_l}{n_l + n_u^w} \hat{E}(f, D_L) + \frac{n_u^w}{n_l + n_u^w} \hat{E}(f, \tilde{D}_U) \\ &+ Disc(f, \mathcal{D}_T, Mix_{\frac{n_l}{n_l + n_u^w}} (\mathcal{D}_L, \mathcal{D}_U^w)) \\ &+ \frac{n_u^w}{n_l + n_u^w} \hat{E}(h, D_L) + \frac{n_u^w}{n_l + n_u^w} Disc(h, \mathcal{D}_L, \mathcal{D}_U)] \end{split}$$



## □Analysis of Semi-Supervised Learning Algorithms



#### Pseudo-labeling

- The pseudo-label predictor is a combination of target predictor and mapping function.

$$\forall f \in \mathcal{F}, h = p \circ f \in \mathcal{H}$$

#### • Consistency

- The pseudo-label predictor is a combination of augmentation and target predictor.

$$\forall f \in \mathcal{F}, h = f \circ a \in \mathcal{H}.$$

#### Mixed Methods

- The pseudo-label predictor is a combination of augmentation, target predictor and mapping function.

$$\forall f \in \mathcal{F}, h = p \circ f \circ a \in \mathcal{H}.$$

#### • Three Shortcomings

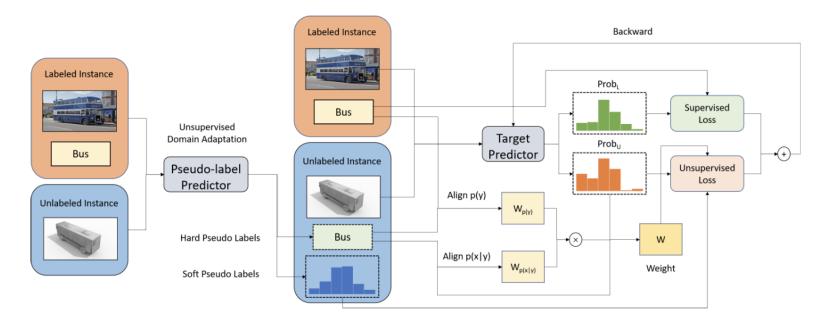
- The coupling of pseudo-label predictor and target predictor leads to conflicting optimization objectives.
- The distribution bias between labeled and unlabeled data leads to low quality of pseudo-labels.
- Sample weights cannot effectively align the distribution of unlabeled data with the target distribution.

### **D**Algorithm Framework



#### Bidirectional Adaptation Algorithm

- Decoupling the pseudo-label predictor and target predictor avoids optimization conflicts.
- Improving the accuracy of pseudo-labels through domain adaptation.
- Aligning the target distribution by weighting unlabeled samples.
  - Aligning p(x|y) with intra-class weights.
  - Aligning p(y) with inter-class weights.

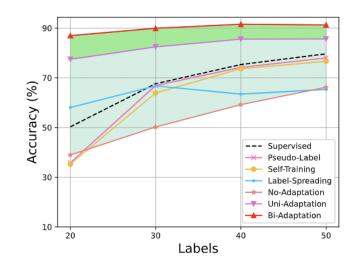


#### http://www.lamda.nju.edu.cn

### **D**Experiments



Theoretical Arguments



Performance Robustness

Table 3. Experiments on VisDA-2017 with 150 labels, 300 labels and 600 labels.

| Methods      | 150 labels         |                    | 300 labels         |                    | 600 labels         |                    |
|--------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|              | S/R                | R/S                | S/R                | R/S                | S/R                | R/S                |
| Supervised   | $85.33 \pm 1.54$   | $78.50\pm0.68$     | $89.64 \pm 0.73$   | $81.81 \pm 0.62$   | $92.20 \pm 0.45$   | $84.13 \pm 0.36$   |
| Mean Teacher | $84.15 \pm 1.08$   | $73.68 \pm 1.00$   | $86.90 \pm 0.61$   | $76.90 \pm 0.46$   | $89.05 \pm 0.48$   | $79.86 \pm 0.30$   |
| FixMatch     | $78.46 \pm 4.15$   | $67.10 \pm 9.46$   | $82.88 \pm 0.85$   | $71.74\pm0.45$     | $87.68 \pm 1.15$   | $79.54 \pm 1.88$   |
| FlexMatch    | $83.43 \pm 1.74$   | $67.90 \pm 1.77$   | $88.09 \pm 0.53$   | $75.17 \pm 1.34$   | $90.11 \pm 1.09$   | $79.28 \pm 0.38$   |
| UASD         | $85.58 \pm 1.55$   | $78.59 \pm 0.41$   | $89.58 \pm 0.79$   | $81.82\pm0.68$     | $92.29 \pm 0.45$   | $84.04\pm0.31$     |
| CAFA         | $83.95 \pm 1.79$   | $72.89 \pm 1.03$   | $87.81 \pm 0.47$   | $76.48 \pm 0.72$   | $89.84 \pm 0.62$   | $78.63 \pm 0.44$   |
| Ours         | $85.92 {\pm} 1.16$ | $79.15 {\pm} 0.39$ | $89.85 {\pm} 0.71$ | $82.27 {\pm} 0.60$ | $92.46 {\pm} 0.38$ | $84.28 {\pm} 0.36$ |



# **Thanks!**