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Background

• Semi-Supervised Learning

– Machine learning relies on a large amount of labeled data. 

– Semi-supervised learning can effectively utilize unlabeled data. 

– It has a limited scope and relies on the same distribution between labeled and 

unlabeled data. 

– There is a risk of significant performance degradation in real-world applications.

• Robust Semi-Supervised Learning

– Utilizing a large amount of unlabeled data that has a different distribution from the 

current labeled data for learning. 

– The goal is to ensure that the semi-supervised algorithm does not perform too poorly 

in real-world applications. 

– This extends the applicability of classical semi-supervised learning. 

– It reduces the risk associated with using semi-supervised learning algorithms.
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Background

• Inconsistent Distributions

– We can only observe that the feature distributions of unlabeled and labeled data 

are inconsistent. 

– Inconsistent feature distributions are equivalent to a combination of inconsistent 

class distributions and inconsistent intra-class feature distributions. 

– Inconsistent distributions between labeled and unlabeled data lead to low quality 

of pseudo-labels.

– Inconsistent distributions between unlabeled data and target data result in poor 

performance and weak robustness of the learner.
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Theoretical Research

• Generalization Error

– Bias of pseudo-label predictions. 

– Variance of pseudo-label predictions. 

– Distribution distance caused by pseudo-label 

predictions. 

– Bias of target predictions. 

– Variance of target predictions. 

– Distribution distance caused by target predictions.

• Optimization Object

– Bias and distribution distance of pseudo-label 

predictions. 

– Bias and distribution distance of target predictions. 

– Objective conflict. 

– Objective can be decoupled.
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• Pseudo-labeling
– The pseudo-label predictor is a combination of target predictor and mapping function.

• Consistency
– The pseudo-label predictor is a combination of augmentation and target predictor.

• Mixed Methods
– The pseudo-label predictor is a combination of augmentation, target predictor and mapping function.

• Three Shortcomings
– The coupling of pseudo-label predictor and target predictor leads to conflicting optimization 

objectives. 

– The distribution bias between labeled and unlabeled data leads to low quality of pseudo-labels.

– Sample weights cannot effectively align the distribution of unlabeled data with the target distribution.

Analysis of Semi-Supervised 

Learning Algorithms



http://www.lamda.nju.edu.cn

Algorithm Framework

• Bidirectional Adaptation Algorithm
– Decoupling the pseudo-label predictor and target predictor avoids optimization conflicts.

– Improving the accuracy of pseudo-labels through domain adaptation. 

– Aligning the target distribution by weighting unlabeled samples.

• Aligning p(x|y) with intra-class weights. 

• Aligning p(y) with inter-class weights. 



http://www.lamda.nju.edu.cn

Experiments

• Theoretical Arguments

• Performance Robustness



Thanks!
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