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Dynamical Systems Reconstruction (DSR)

𝒛𝑡 = 𝑭𝜽 𝒛𝑡−1
𝒙𝑡 = 𝑮𝝓 𝒛𝑡

Infer
𝜽, 𝝓

Generate

Observe system at 
discrete times 𝑡𝑛 RNN
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Same geometrical and 
temporal properties

Empirical data often come with …
- Observational and dynamical noise
- Multiple temporal and spatial time scales
- Non-stationarity

⋮

… and almost 
always chaotic! 



Chaotic Dynamics and Loss Gradients
[1] showed: Training RNNs via BPTT on chaotic data is ill-posed:

𝒛𝑡 = 𝑭𝜽 𝒛𝑡−1, 𝒔𝑡

Generic RNN:
𝑱𝑡 ∶=

𝜕𝑭𝜽(𝒛𝑡−1, 𝒔𝑡)

𝜕𝒛𝑡−1
=
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Jacobian:

Maximum Lyapunov exponent of an RNN orbit 𝒁 = 𝒛1, … , 𝒛𝑇 , … :

𝜆𝑚𝑎𝑥 ≔ lim
𝑇→∞
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𝜆𝑚𝑎𝑥 > 0 necessary 
condition for chaos!

Backpropagation through time (BPTT) with loss 𝐿 = σ𝑡=1
𝑇 𝐿𝑡
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𝑱𝑡−𝑘with
Loss gradients during training 
on chaotic data will inevitably 
explode for 𝑇 → ∞. 

3[1] Mikhaeil et al. (NIPS, 2022). On the difficulty of learning chaotic dynamics with RNNs. 



Generalized Teacher Forcing (GTF)

𝒛𝑡 = 𝑭𝜽 ෤𝒛𝑡−1
෤𝒛𝑡−1 = 1 − 𝛼 𝒛𝑡−1 + 𝛼ො𝒛t−1

Jacobian factorizes

During training, GTF [2] linearly interpolates 
between RNN state 𝒛𝑡 and data-inferred 
state ො𝒛t with parameter 0 ≤ 𝛼 ≤ 1

𝑱𝑡 =
𝜕𝒛𝑡
𝜕𝒛𝑡−1

=
𝜕𝑭𝜽 ෤𝒛𝑡−1
𝜕෤𝒛𝑡−1

𝜕෤𝒛𝑡−1
𝜕𝒛𝑡−1

= ෨𝑱𝑡(1 − 𝛼)

4[2] Doya (1992, IEEE). Bifurcations in the learning of recurrent neural networks.



Generalized Teacher Forcing (GTF)

𝜕𝒛𝑡
𝜕𝒛𝑟

= 1 − 𝛼 𝑡−𝑟 ෑ

𝑘=0

𝑡−𝑟−1

෨𝑱𝑡−𝑟

This allows 𝛼 to control the Jacobian 
product norm during training.

𝛼 = 𝛼∗ ∶= 1 −
1

෤𝜎𝑚𝑎𝑥

Choosing

leads to strictly all-time bounded 
gradients during BPTT training.
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Adaptive GTF (aGTF)
Computing 𝛼∗ in practice is too costly, use data-based proxies instead

𝜕𝒛𝑇
𝜕𝒛1

= 1 − 𝛼 T−1ෑ
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!
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with   𝓖 ෨𝑱𝑇:2 ∶= ැ
𝑘=0

𝑇−2 ෨𝑱𝑇−𝑘
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𝑇−1
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1

𝑇−1
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𝛼 annealing scheme, 
lower bound given 
by proxies

1 −
1

𝓖(෨𝑱𝑇:2)
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GTF is only used in 
training, not testing!



Model Reformulation: shallow PLRNN

• Reformulation of the dendritic piecewise linear RNN (dendPLRNN, [3]) 
into a 1-hidden-layer design

𝒛𝑡 = 𝑭𝜽(𝒛𝑡−1) = 𝑨𝒛𝑡−1 +𝑾1𝑅𝑒𝐿𝑈 𝑾2𝒛𝑡−1 + 𝐡2 + 𝐡1

𝑨 ∈ ℝ𝑀×𝑀 diagonal

𝑾𝟏 ∈ ℝ
𝑀×𝐿,𝑾𝟐 ∈ ℝ

𝐿×𝑀

𝒉𝟏 ∈ ℝ
𝑀, 𝒉𝟐 ∈ ℝ

𝐿

𝑀: model’s state space 
dimensionality

𝐿: hidden layer size

• Can learn DS in very low-
dimensional state spaces

• Retains semi-analytic access 
to fixed points and k-cycles
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[3] Brenner & Hess et al. (2022, ICML). Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems.



Reconstruction of DS from empirical data

- Gated RNN architectures (LSTMs)
- Reservoir Computers (RC)
- Library-based methods (SINDy)
- ODE-based RNNs like Long Expressive 

Memory (LEM) and Neural ODEs (N-ODE)

• Competitive performance of shPLRNN + GTF 
compared to 4 major classes of DSR 
algorithms

Electrocardiogram Electroencephalogram

Freely generated 
orbits after training!
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Reconstruction of DS from empirical data

𝐷𝑠𝑡𝑠𝑝 = න
𝒙∈ℝ𝑁

𝑝 𝒙 log
𝑝 𝒙

𝑞(𝒙)

Agreement in attractor geometry:

𝐷𝐻=
1

𝑁
෍

𝑖=1

𝑁

1 − න
−∞

∞

𝑓𝑖 𝜔 𝑔𝑖 𝜔 𝑑𝜔

1
2

Hellinger distance between power spectra:

highlow

𝐷𝐻

𝐷𝑠𝑡𝑠𝑝
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Conclusion
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Generalized Teacher Forcing:
Training algorithm to solve 

the exploding gradient 
problem in BPTT training on 

chaotic systems.

𝒛𝑡−1 𝒛𝑡

𝑨

𝑾𝟐 𝑾𝟏

recurrence

Shallow PLRNN:
Model reformulation 
that allows for low-
dimensional state 

spaces while providing 
analytic access to FPs 

and k-cycles.

Reconstructing DS 
from empirical data: 

Competitive algorithm 
+ model for dynamical 
systems reconstruction 

compared to other 
SOTA methods in the 

field.



11

This work was funded by the German Research Foundation (DFG) within 
Germany’s Excellence Strategy EXC 2181/1 – 390900948 (STRUCTURES), 
by DFG grants Du354/10-1 & Du354/15-1 to DD, and by the European 
Union Horizon-2020 consortium SC1-DTH-13-2020 (IMMERSE).

Thanks for 
your 

attention!


