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Dynamical Systems Reconstruction (DSR)

Observe system at Same geometrical and
discrete times {t,,} temporal properties

RNN

Infer N Generate
0, ¢ ”
’ {Zt = FB(Zt—l)]
Xt = qu(zt) }
Empirical data often come with ...
- Observational and dynamical noise .. and almost
- Multiple temporal and spatial time scales always chaotic!

- Non-stationarity



Chaotic Dynamics and Loss Gradients

[1] showed: Training RNNs via BPTT on chaotic data is ill-posed:

Generic RNN:

z, = Fg(z¢_1,5¢)

Jacobian:

Ji:
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Maximum Lyapunov exponent of an RNN orbit Z = {z, ..., Z, ... }:
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Amax > 0 necessary
condition for chaos!

Backpropagation through time (BPTT) with loss L = Y1 _, L,
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Loss gradients during training
on chaotic data will inevitably
explode for T — oo,

[1] Mikhaeil et al. (NIPS, 2022). On the difficulty of learning chaotic dynamics with RNNs. 3



Generalized Teacher Forcing (GTF)

During training, GTF [2] linearly interpolates
between RNN state z; and data-inferred
state Z; with parameter0 < a <1

Jacobian factorizes

_ 0z, =aF9(Zt—1)a§t—1
0z;4 0Z;y 0z¢ 4

z, = Fg(Z;_1) — ],
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@ Predicted State 2¢
@ Teacher Forced State Z;

@ Datalnferred State  Z;

Time

[2] Doya (1992, IEEE). Bifurcations in the learning of recurrent neural networks. 4



Generalized Teacher Forcing (GTF)

This allows « to control the Jacobian

product norm during training. 0.05
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leads to strictly all-time bounded | | | .
gradients during BPTT training. 0 500 1000 1500




Adaptive GTF (aGTF)

Computing a™ in practice is too costly, use data-based proxies instead

T—2 . = N . (17725 =
021 _ (1 — gyT1 H]T_k | —p [a=1o with G(r2) = q—[k=o]T—k)
0z, 11 16U )| ~ — Y1 Je
1.0 a annealing scheme,
lower bound given
0.8- by proxies
. GTF is only used in
training, not testing!
1— ! —— -
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0 2.0x10* 4.0x10° 6.0x10* 8.0x10*
parameter update step 6



Model Reformulation: shallow PLRNN

Reformulation of the dendritic piecewise linear RNN (dendPLRNN, [3])
into a 1-hidden-layer design

Zt - Fe(zt_l) - AZt_]_ + WlReLU(szt_l + hz) + h1 i
o
MXM q; '
AeR diagonal M: model’s state space - i O Wi
W, € R"<L W, € RLXM dimensionality :
h, € R™ h, € Rt L: hidden layer size -
( J
recurrence
Can learn DS in very low- * Retains semi-analytic access
dimensional state spaces to fixed points and k-cycles

[3] Brenner & Hess et al. (2022, ICML). Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems.



Reconstruction of DS from empirical data

| Electrocardiogram | | Electroencephalogram |

Competitive performance of shPLRNN + GTF Eca (@ata) EEG (date)
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Reconstruction of DS from empirical data

Agreement in attractor geometry:

p(x)

D.,. = j () lo
StSp xeRNp gq(x)

Hellinger distance between power spectra:

Table 1. SOTA comparisons. Reported values are median - median absolute deviation over 20 independent training runs. ‘dim’ refers to

the model’s state space dimensionality (number of dynamical variables). || denotes the total number of trainable parameters,

=%i 1—joo\/fi(w)gi(w) dw
i=1 i

N =

Dataset Method Dysp | Dyl PE(20) | dim 0|
shPLRNN + GTF 43+06 034002 (24+0.0)- 10° D 2785
shPLRNN + aGTF 45404 0344002 (24+02)-107 5 2785
shPLRNN + STF T1£18 038+£003 (5+£2)-107° 5 2785
ECG (5d) dendPLRNN +id-TF 58 +0.6  0.37+0.06 (4.0+£0.4)- 1“._3 35 3245
RC 0.3 £ LT 0.39£0.05 (4£1)-1077 1000y 5000
LSTM-TBPTT 152405 0.73£0.02 (25£0.5)- 1072 | 70 0920
SINDy diverging  diverging diverging ] 3960
N-ODE 122407 074003 (414011070 | 5 | 4955
LEM 163402 056+004 (74+£0.1)-10 L1 62 4872
shPLRNN + GTF 21402 011£001 (5.5£01)-107" |16 | 17952
shPLRNN + aGTF 24402 013£001 (54£0.6)-107" |16 | 17952
shPLRNN + STF 14+7 0.50+016 (2.5+ IJ.S) 107! 16 17952
EEG dendPLRNN + id-TF 3+1 0.13+0.04 (3.440.1)- 10°1 105 18099
(64d) RC 14+7 0.54+0.15 (5.940.3)- 1071|448 | 28672
LSTM-TBPTT 30421 02+01 (9.2+2.3)- 1070 {160 | 51584
SINDy diverging  diverging diverging 64 | 133120
N-ODE 20405 0474001 (5.54£02)-107" | 64 17995
LEM 102415 0384006 (82+0.6)-107" | 76 18304




Conclusion

Generalized Teacher Forcing:

@ Predicted State 2t
@ TeacherForced State Z;

Training algorithm to solve
the exploding gradient

@ Datalnferred State  Z;

problem in BPTT training on

chaotic systems. fo t e B t3
Shallow PLRNN: ® Reconstructing DS
. . . =7y
Model reformulation < from empirical data: - et e
that allows for low- O Competitive algorithm 7| seiiiewlimbmprdivens
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