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Multistage Stochastic Programming

• Multi-period sequential decision-making problems under uncertainty

• Multistage Stochastic Programming (MSP)
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Background
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The number of 
scenarios

The number of stages and/or nodes per stage

Increase exponentially!



Stochastic Dual Dynamic Programming
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Background

• Stagewise Decomposition

• Stochastic Dual Dynamic Programming (SDDP)

• Issues: computational inefficiency

– Computational time of subproblem increases

– Slight perturbation in the problem requires a complete re-solving



Improving SDDP

• Neural SDDP (𝝂-SDDP)

• Drawbacks:

– Previously generated cuts are not considered to generate new ones

– Only linear programs can be solved by 𝜈-SDDP

– The number of cuts to be generated is fixed
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Related Works



Motivation

1. Generation of new cuts depends on 
previously generated cuts

2. Cuts are related to each other

3. Cuts are generated sequentially until 
the convergence condition is satisfied
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Model

Sequence Models?

We propose a model, TranSDDP, that uses architecture of Transformer to 
generate the cuts for approximating the value function in SDDP

Attention Networks?



Architecture –TranSDDP
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Model

• TranSDDP



Architecture –TranSDDP-Decoder

• Herein, we note that:

– The size of the input sequence is fixed

– Interrelationships between input sequence are relatively insignificant

• TranSDDP-Decoder: decoder part of the TranSDDP model
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Model



TranSDDP Learning
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Model

• Input sequence: Parameters of probability distribution for stochastic elements + time

– Parameters are sampled from the prior distribution (parameter space)

– Enables solving for a family of problems, not limited to a single instance

• Output sequence: cut information + token

• Dataset 𝓓𝒔 ≔ 𝑧𝑠 ≔ Λ, ǁ𝑡, 𝛽𝑘 , 𝛼𝑘 , 𝜏𝑘 𝑘=1
𝐾

𝑠 𝑠=1

𝑆

• Loss function: MSE Loss (for cuts) + CE Loss (for tokens)



Numerical Experiments

• Tasks

– Task 1: Energy Planning

– Task 2: Financial Planning

– Task 3: Production Planning

• Benchmarks

– MSP, SDDP

– L1-Dominance, Value Function Gradient Learning (VFGL), Neural SDDP
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Results



Energy Planning
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Results



Financial Planning
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Results



Production Planning
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Results
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Feasibility
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Results



Value Function Comparison: Energy Planning
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Results



Value Function Comparison: Financial Planning
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Results



Value Function Comparison: Production Planning
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Results


