

Pre-training for Speech Translation: CTC Meets Optimal Transport

Phuong-Hang Le

Hongyu Gong

Changhan Wang

Juan Pino

Benjamin Lecouteux

Didier Schwab

Context and Motivation

Task: Speech-to-text translation (ST).

- Challenging, often requires two auxiliary tasks:
 - Automatic speech recognition (ASR)
 - Machine Translation (MT).
- Two ways of using ASR and MT for ST: *pre-training* or *multi-task learning* (or both).

Two ways of using auxiliary tasks

Multi-task learning

A simplified example of multi-task learning [Tang et al., 2021]

(CE: cross-entropy)

の へ 3/15

✓ Strong performance

X High ST training complexity.

イロト 不得 トイヨト イヨト ニヨー

Two ways of using auxiliary tasks

Multi-task learning

A simplified example of multi-task learning [Tang et al., 2021]

(CE: cross-entropy)

クヘマ 3/15

✓ Strong performance

X High ST training complexity.

・ロト ・得入 ・ヨト ・ヨト ・ヨー

Contributions

Siamese pre-training with CTC and Optimal Transport

(ロ) (母) (ヨ) (ヨ) (ヨ) (4/15)

- ✓ Pre-train once, use many times
- ✓ Low modality gap
- ✓ Strong performance
- ✓ Low ST training complexity.

Review of CTC

• CTC predicts a token $\hat{a}_t \in \mathcal{V}$ for each time step t:

$$p(a_t | \mathbf{X}) = \operatorname{softmax}(\mathbf{W}\mathbf{h}_t + \mathbf{b})[a_t] \ \forall a_t \in \mathcal{V},$$
$$\hat{a}_t = \operatorname{argmax}_{a_t \in \mathcal{V}} p(a_t | \mathbf{X}).$$

For details (collapsing, Viterbi decoding, etc.), see [Graves et al., 2006].

CTC can reduce modality gap in pre-training

✓ ASR encoder trained with CTC already learns to align speech input to text output without a decoder.

 \rightarrow Pre-trained alignment information is preserved in encoder.

✗ Solves "ASR decoder discarded" issue but not "MT encoder discarded".

Review of discrete optimal transport

Problem: Transporting all masses of distribution α to distribution β .

- $\mathbf{a} \in \mathbb{R}^m_+, \mathbf{b} \in \mathbb{R}^n_+$: masses of α and β $(\mathbf{1}^\top \mathbf{a} = \mathbf{1}^\top \mathbf{b} = 1).$
- $\mathbf{u}_1, \ldots, \mathbf{u}_m \in \mathbb{R}^d$, $\mathbf{v}_1, \ldots, \mathbf{v}_n \in \mathbb{R}^d$: *locations* of the masses **a** and **b**.
- c(u_i, v_j): cost of transporting a unit of mass from u_i to v_j.

• $Z_{ij} \ge 0$: *quantity* of mass to be transported from \mathbf{u}_i to \mathbf{v}_j .

OT finds *transportation plan* **Z*** having minimum total cost:

$$\min_{\mathbf{Z} \in \mathbb{R}^{m \times n}_{+}} \sum_{i=1}^{m} \sum_{j=1}^{n} Z_{ij} c(\mathbf{u}_{i}, \mathbf{v}_{j}),$$

s.t.
$$\sum_{j=1}^{n} Z_{ij} = a_{i} \forall i, \quad \sum_{i=1}^{m} Z_{ij} = b_{j} \forall j$$

(sum of row *i* is a_{i} , sum of column *j* is b_{j})

Review of discrete optimal transport

Problem: Transporting all masses of distribution α to distribution β .

- $\mathbf{a} \in \mathbb{R}^m_+, \mathbf{b} \in \mathbb{R}^n_+$: masses of α and β $(\mathbf{1}^\top \mathbf{a} = \mathbf{1}^\top \mathbf{b} = 1).$
- $\mathbf{u}_1, \ldots, \mathbf{u}_m \in \mathbb{R}^d$, $\mathbf{v}_1, \ldots, \mathbf{v}_n \in \mathbb{R}^d$: *locations* of the masses **a** and **b**.
- c(u_i, v_j): cost of transporting a unit of mass from u_i to v_j.

• $Z_{ij} \ge 0$: *quantity* of mass to be transported from \mathbf{u}_i to \mathbf{v}_j .

OT finds *transportation plan* Z* having minimum total cost:

$$\min_{\mathbf{Z} \in \mathbb{R}^{m \times n}_{+}} \sum_{i=1}^{m} \sum_{j=1}^{n} Z_{ij} c(\mathbf{u}_{i}, \mathbf{v}_{j}),$$

s.t.
$$\sum_{j=1}^{n} Z_{ij} = a_{i} \ \forall i, \quad \sum_{i=1}^{m} Z_{ij} = b_{j} \ \forall j$$

(sum of row *i* is a_{i} , sum of column *j* is b_{j})

Learning to align speech and text features with OT

Siamese network for speech-text alignment

- Speech features $\mathbf{U} = (\mathbf{u}_1, \dots, \mathbf{u}_m)$, text features $\mathbf{V} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$.
- Define *uniform* distributions α, β with masses located at **U**, **V**.
- The OT (or Wasserstein) loss is the minimum transportation cost:

$$\mathbf{OT}(\mathbf{U},\mathbf{V}) = \min_{\mathbf{Z}\in\mathbb{R}^{m\times n}_+} \sum_{i=1}^m \sum_{j=1}^n Z_{ij} c(\mathbf{u}_i,\mathbf{v}_j) \quad \text{s.t.} \ \sum_{j=1}^n Z_{ij} = \frac{1}{m}, \ \sum_{i=1}^m Z_{ij} = \frac{1}{n}$$

• OT pulls speech and text features *closer in Wasserstein space*.

• Z* can be seen as an *alignment map* between the two sequences.

Learning to align speech and text features with OT

Siamese network for speech-text alignment

- Speech features $\mathbf{U} = (\mathbf{u}_1, \dots, \mathbf{u}_m)$, text features $\mathbf{V} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$.
- Define *uniform* distributions α, β with masses located at **U**, **V**.
- The OT (or Wasserstein) loss is the minimum transportation cost:

$$\mathbf{OT}(\mathbf{U},\mathbf{V}) = \min_{\mathbf{Z}\in\mathbb{R}^{m\times n}_+} \sum_{i=1}^m \sum_{j=1}^n Z_{ij} c(\mathbf{u}_i,\mathbf{v}_j) \quad \text{s.t.} \ \sum_{j=1}^n Z_{ij} = \frac{1}{m}, \ \sum_{i=1}^m Z_{ij} = \frac{1}{n}$$

• OT pulls speech and text features *closer in Wasserstein space*.

• Z* can be seen as an *alignment map* between the two sequences.

Learning to align speech and text features with OT

Siamese network for speech-text alignment

- Speech features $\mathbf{U} = (\mathbf{u}_1, \dots, \mathbf{u}_m)$, text features $\mathbf{V} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$.
- Define *uniform* distributions α, β with masses located at U, V.
- The OT (or Wasserstein) loss is the minimum transportation cost:

$$\mathbf{OT}(\mathbf{U},\mathbf{V}) = \min_{\mathbf{Z}\in\mathbb{R}^{m\times n}_+} \sum_{i=1}^m \sum_{j=1}^n Z_{ij} c(\mathbf{u}_i,\mathbf{v}_j) \quad \text{s.t.} \ \sum_{j=1}^n Z_{ij} = \frac{1}{m}, \ \sum_{i=1}^m Z_{ij} = \frac{1}{n}$$

- OT pulls speech and text features *closer in Wasserstein space*.
- Z* can be seen as an *alignment map* between the two sequences.

Positional encoding for optimal transport

- **Motivation:** OT loss ignores sequence orders, while speech/text inputs are *monotonically* aligned.
- Idea: Integrating normalized positions s_i = ^{j-1}/_{m-1} and t_j = ^{j-1}/_{n-1} into cost function:

$$c(\mathbf{u}_i,\mathbf{v}_j) = \left(\|\mathbf{u}_i - \mathbf{v}_j\|_p^p + \gamma^p |s_i - t_j|^p \right)^{1/p}.$$

(ロ) (母) (ヨ) (ヨ) (ヨ) (9/15)

Intuition: Mismatches in position will be penalized due to high cost.

• This favors aligning $\mathbf{u}_1 \rightarrow \mathbf{v}_1$ instead of $\mathbf{u}_1 \rightarrow \mathbf{v}_n$, for example.

Positional encoding for optimal transport

- **Motivation:** OT loss ignores sequence orders, while speech/text inputs are *monotonically* aligned.
- Idea: Integrating normalized positions $s_i = \frac{i-1}{m-1}$ and $t_j = \frac{j-1}{n-1}$ into cost function:

$$c(\mathbf{u}_i, \mathbf{v}_j) = \left(\|\mathbf{u}_i - \mathbf{v}_j\|_p^p + \gamma^p |s_i - t_j|^p \right)^{1/p}$$

Intuition: Mismatches in position will be penalized due to high cost.
This favors aligning u₁ → v₁ instead of u₁ → v_n, for example.

(ロ) (母) (ヨ) (ヨ) (ヨ) (9/15)

Positional encoding for optimal transport

- **Motivation:** OT loss ignores sequence orders, while speech/text inputs are *monotonically* aligned.
- Idea: Integrating normalized positions $s_i = \frac{i-1}{m-1}$ and $t_j = \frac{j-1}{n-1}$ into cost function:

$$c(\mathbf{u}_i, \mathbf{v}_j) = \left(\|\mathbf{u}_i - \mathbf{v}_j\|_p^p + \gamma^p |s_i - t_j|^p \right)^{1/p}$$

(ロ) (母) (ヨ) (ヨ) (ヨ) (9/15)

• Intuition: Mismatches in position will be penalized due to high cost.

• This favors aligning $\mathbf{u}_1 \rightarrow \mathbf{v}_1$ instead of $\mathbf{u}_1 \rightarrow \mathbf{v}_n$, for example.

Proposed recipe for speech translation

Proposed ASR & MT pre-training recipe

- ✓ Using all pre-trained components → preserving learned alignment information.
- OT reduces modality gap by aligning speech and text features.

Proposed recipe for speech translation

Proposed ASR & MT pre-training recipe

- \checkmark Using all pre-trained components \rightarrow preserving learned alignment information.
- \checkmark OT reduces modality gap by aligning speech and text features.

Summary of main experimental results

Main results on standard benchmarks **MuST-C** [Di Gangi et al., 2019] and **CoVoST-2** [Wang et al., 2020b]:

- Siamese pre-training (Siamese-PT) can use other differentiable distances (e.g., Euclidean distance, KL-divergence), but OT achieves best results.
- Siamese-PT outperforms pre-training with CE, or CTC, or CTC+CE.
- With only *vanilla encoder-decoder* and even *without external data*, our method is competitive with recent SoTA methods.
- Siamese-PT can be applied on top of strong multi-task learning systems [Tang et al., 2021], leading to further improvements.

Comparison to state-of-the-art results

Method	Multi	External Data		BLEU								
		Unlabeled	Labeled	de	es	fr	it	nl	pt	ro	ru	avg
FAIRSEQ S2T [Wang et al., 2020a]	√	-	-	24.5	28.2	34.9	24.6	28.6	31.1	23.8	16.0	26.5
ESPnet-ST [Inaguma et al., 2020]	\checkmark	-	-	22.9	28.0	32.7	23.8	27.4	28.0	21.9	15.8	25.1
Dual-decoder [Le et al., 2020]	\checkmark	-	-	23.6	28.1	33.5	24.2	27.6	30.0	22.9	15.2	25.6
Adapters [Le et al., 2021]	\checkmark	-	-	24.7	28.7	35.0	25.0	28.8	31.1	23.8	16.4	26.6
BiKD [Inaguma et al., 2021]	-	-	-	25.3	-	35.3	-	-	-	-	-	-
JointSpeechText [Tang et al., 2021]		-	\checkmark	26.8	31.0	37.4	-	-	-	-	-	-
TaskAware [Indurthi et al., 2021]	-	-	\checkmark	28.9	-	-	-	-	-	-	-	-
ConST [Ye et al., 2022]	-	\checkmark	\checkmark	28.3	32.0	38.3	27.2	31.7	33.1	25.6	18.9	29.4
STPT [Tang et al., 2022]	-	\checkmark	\checkmark	-	33.1	39.7	-	-	-	-	-	-
CE pre-training	√	-	-	24.6	28.7	34.9	24.6	28.4	30.7	23.7	15.9	26.4
CTC pre-training	√ √	-	-	25.9	29.7	36.6	25.6	29.6	32.0	24.6	16.7	27.6
CTC+CE pre-training MEDIC	м ✓	-	-	25.6	29.5	36.4	25.2	29.5	31.6	24.5	16.5	27.4
Siamese-PT (this work)	\checkmark	-	-	26.2	29.8	36.9	25.9	29.8	32.1	24.8	16.8	27.8
CE pre-training	√	-	-	26.9	30.8	37.7	26.7	30.8	33.3	26.2	17.9	28.8
CTC pre-training	√ V	-	-	27.6	31.4	38.2	27.2	31.1	33.6	26.4	18.4	29.2
CTC+CE pre-training	,r⊑ √	-	-	27.2	31.2	38.0	27.0	31.5	33.7	26.2	18.3	29.1
Siamese-PT (this work)	\checkmark	-	-	27.9	31.8	39.2	27.7	31.7	34.2	27.0	18.5	29.8

BLEU on test sets of MuST-C

 By simply increasing model size, our method applied to vanilla encoder-decoder architecture without external data performs on par with strong multi-task learning systems trained with external data.

Main Takeaways

- *Encoder trained with CTC is stronger* than the one trained with encoder-decoder-CE.
- Siamese pre-training with CTC and optimal transport helps *reduce modality gap without any changes in the ST model.*
- Optimal transport is very effective for *learning to align sequences of features from different modalities*.

Thank you for your attention!

Please read our paper for more details.

cha Code and pre-trained models:

https://github.com/formiel/fairseq.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○ 14/15