Evaluating Self-Supervised Learning via Risk Decomposition

Yann Dubois, Tatsunori Hashimoto, Percy Liang

ICML 2023 Oral

Background: pretraining in SSL

- E.g. train on unlabeled ImageNet using SSL

Background: linear probing in SSL

- E.g. train on labeled ImageNet using supervised learning

Motivation: evaluating SSL

- There are many SSL pipelines that get proposed, with different:

SSL objectives architectures optimizers pretraining data

- Evaluated on a single metric: linear probing on ImageNet.

Motivation: evaluating SSL

- There are many SSL pipelines that get proposed, with different:

SSL objectives architectures optimizers pretraining data

- Evaluated on a single metric: linear probing on ImageNet.

X why is an SSL pipeline better?

X when is an SSL pipeline better?

X how to improve the SSL pipeline?

- **Supervised learning** monitor training/validation loss
 - underfitting \Rightarrow increase capacity
 - overfitting \Rightarrow regularize

-

. . .

- small training loss: model would be better with large datasets

- **Supervised learning** monitor training/validation loss
 - underfitting \Rightarrow increase capacity
 - overfitting \Rightarrow regularize

. . .

- small training loss: model would be better with large datasets

- **Supervised learning** monitor training/validation loss
 - underfitting \Rightarrow increase capacity
 - overfitting \Rightarrow regularize
 - small training loss: model would be better with large datasets

- ...

- Self-supervised learning
 - ?

- **Supervised learning** monitor training/validation loss
 - underfitting \Rightarrow increase capacity
 - overfitting \Rightarrow regularize
 - small training loss: model would be better with large datasets
 - ...
- Self-supervised learning
 - ?

Idea: generalize risk decomposition to SSL and estimate it

We provide efficient estimators for each component!

Experiments: supervised risk decomposition

Broad evaluation of SSL methods:

169 pretrained encoders, 28 objectives, 20 arch., 7 years

Benchmark:

- linear probes on ImageNet (100%, 30-shot, 1%, 5-shot, 3-shot)
- estimate each error component

Results: no model is uniformly better

Results: Full- vs Few-shot Tradeoff

			Image	Net pro	be acc.
Obj.	Arch.	Param.	100%	1%	3-shot
MoCo-v3	RN50	24M	73.7	<u>55.5</u>	<u>40.4</u>
DINO	RN50	24M	74.2	52.9	35.9
SwAV	RN50w4	375M	76.2	56.2	36.9
VICRegL	CnvNxt-B	85M	74.8	<u>64.3</u>	<u>56.3</u>
MUGS	ViT-S16	22M	77.3	62.9	49.6
MSN	ViT-S16	22M	76.1	<u>67.5</u>	<u>60.4</u>
MSN	ViT-B4	86M	80.1	<u>75.1</u>	69.3
MUGS	ViT-L16	303M	<u>80.9</u>	74.0	68.5
MSN	ViT-L7	303M	79.9	74.9	69.8
CLIP	ViT-L14	304M	85.0	75.2	62.9
OpenCLIP	ViT-H14	632M	84.4	75.8	63.7

the best model in full-shot is always different than in few-shot

Results: risk components over time

Usability \rightarrow probe gen.

Results: implication for SSL method design

	# dim. \downarrow	# views ↑	ViT	# param.↑	MLP proj.	generative SSL	# epoch \uparrow	Adam
Usability error	1	\downarrow		\downarrow	\downarrow	↑	\downarrow	
Probe gen. error	\downarrow	\downarrow	\downarrow		\downarrow	\downarrow	\downarrow	\downarrow
Full-shot error	1	\downarrow	+	\downarrow	\downarrow	1	\downarrow	\downarrow
3-shot error	\downarrow	\downarrow	+	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow

Results: dimensionality

Some design choices (e.g. dimensionality) can control U-P tradeoff => full- vs few-shot

Ours	Obj.	ViT	Dim.	100%	1%	3-shot
×	MUGS	S16	1536	77.3	62.9	49.6
√	MUGS	S16	384	77.0	66.6	57.9
×	OpenCLIP	H14	1280	84.4	75.8	63.7
√	OpenCLIP	H14	1024	84.3	76.5	65.5

by decreasing dimensionality we can greatly improve few shot performance without any retraining!

Results: architecture

Other design choices (e.g. architecture) overcome the tradeoff => uniform improvement

Results: exact objective

Other design choices (e.g. the <u>exact</u> objective in generative or contrastive) don't matter when controlling for confounders!

- New risk decomposition for SSL with efficient estimators

$$\mathbf{R}_{U,S} - \mathbf{R}_{*} = \mathbf{R}_{U,S} - \mathbf{R}_{A,S} + \mathbf{R}_{A,S} - \mathbf{R}_{A,\mathcal{F}} + \mathbf{R}_{A,\mathcal{F}} - \mathbf{R}_{\Phi,\mathcal{F}} + \mathbf{R}_{\Phi,\mathcal{F}} - \mathbf{R}_{*}$$
excess risk encoder generalization probe generalization representation usability approximation
$$\frac{\mathbf{Agorithn I Estimating risk components in the standard SSL setting}{\mathbf{Require: Eacoder family \Phi, robe family \mathcal{F}, training \mathcal{S}_{U}} and testing \mathcal{S}_{U} sets, SSL algorithm \mathcal{A}_{e}, evaluation loss \mathcal{E}.$$

$$\frac{\mathbf{Agorithn I Estimating risk components in the standard SSL setting}{\mathbf{Require: Eacoder family \Phi, robe family \mathcal{F}, training \mathcal{S}_{U}} and testing \mathcal{S}_{U} sets, SSL algorithm \mathcal{A}_{e}, evaluation loss \mathcal{E}.$$

$$\frac{\mathbf{R}_{U,V} - \mathbf{R}_{V,V} -$$

- New risk decomposition for SSL with efficient estimators
- Meta-analysis of 169 models and 30 design choices

(e) Proj. Arch.

- New risk decomposition for SSL with efficient estimators
- Meta-analysis of 169 models and 30 design choices
- Many more results in the paper!
 - Thorough analysis of each design choice
 - Large scale evaluation of SSL with different metrics

	1.50	1 Y 1 1 1		But furgering			Name of Street o					
Really		(and	Dida-	400	lis-tellar	Fade pro	Dis pix.	811	and the second	14	1.84	1984
	610.1			- 10	1.4	- 291	1.84	- 941	10.9	30	11.9	
hatao	8154		100.94		1.14	100	145	1007	100	182	10.40	14.7
1232	100	-	100.000.0000	- 25	- 35	- 57	15	- 65	100	35	11.0	184
point.	812		10.44	1.8			01		1705	18.8	124	1.1
54	804		1980 C	1.4	128	10.0	100	100	101	34	10.0	- 600
		-	100	- 98	- 38	- 197	- IE	188	- 82	-88	-87	- 63
		-		- 38	- 29	127	- 18-	- 22	101	- 22	- 21	-
		-		- 22	1.14	100	1.00	8.07	100	- 22	110	
	170.00	-		100	100	100	100	100	10.00	- 22	100	100
1.94	tit.	1		- 15	12	12	12	10	-22	-33	11	- 23
nenija in Al	deduced.	-	- eret	1.4	2.04	1.144	1.00	10.0	100		10.00	-
	failed.	-		14	100	1.00	100	100	100	37		- 53
	Internal.	-	1000	- 12	-12	114	- 12	-12	100	- 22	- 22	- 22
	8709	-	1001	- 22	12	122	12	- 27	- 22	12	- 22	- 22
-	10.4.4		-	100		104	15	3.4	1148	11.0	114	
	almost .	-	_	1.00		100	12	110	- 00	- 22	- 22	- 53

import torch

- New risk decomposition for SSL with efficient estimators
- Meta-analysis of 169 models and 30 design choices
- Many more results in the paper!
- Torch Hub API & <u>code</u> to access any models or metadata in one line

```
# loads the desired pretrained model and preprocessing pipeline
name = "dino_rn50" # example
model, preprocessor = torch.hub.load('YannDubs/SSL-Risk-Decomposition:main', name, trust_repo=True)
# gets all available models
available_names = torch.hub.list('YannDubs/SSL-Risk-Decomposition:main')
```

gets all results and hyperparameters as a dataframe
results_df = torch.hub.load('YannDubs/SSL-Risk-Decomposition:main', "results_df")

