Which Features are Learned by Contrastive Learning? On the Role of *Simplicity Bias* in *Class Collapse* and *Feature Suppression*

Yihao Xue¹, Siddharth Joshi¹, Eric Gan¹, Pin-Yu Chen², Baharan Mirzasoleiman¹

¹ University of California, Los Angeles, ² IBM Research

ICML 2023

Representation Learning

Contrastive learning (CL) has become one of the best representation learning approaches, achieving state-of-the-art performance across various tasks.

But the learned representations can sometimes fail to capture important features

What we can learn if we have all the labels:

Supervised CL (SCL) --- with labels

loss function:

 $-\log \frac{\exp \operatorname{sim}(pos)}{\exp \operatorname{sim}(pos) + \sum \exp \operatorname{sim}(neg)}$

What we can learn if we have all the labels:

Supervised CL (SCL) --- with labels

loss function:

$$-\log \frac{\exp \operatorname{sim}(pos)}{\exp \operatorname{sim}(pos) + \sum \exp \operatorname{sim}(neg)}$$

"vehicle"

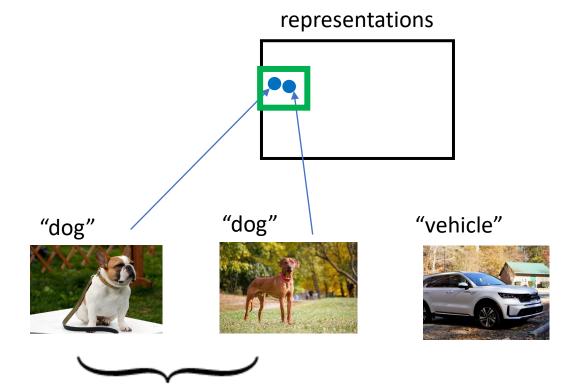
Positive Pair

What we can learn if we have all the labels:

Supervised CL (SCL) --- with labels

loss function:

$$-\log \frac{\exp \operatorname{sim}(pos)}{\exp \operatorname{sim}(pos) + \sum \exp \operatorname{sim}(neg)}$$

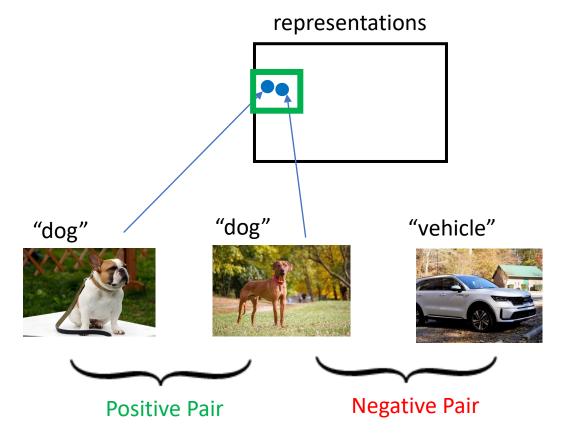


Positive Pair

What we can learn if we have all the labels:

Supervised CL (SCL) --- with labels

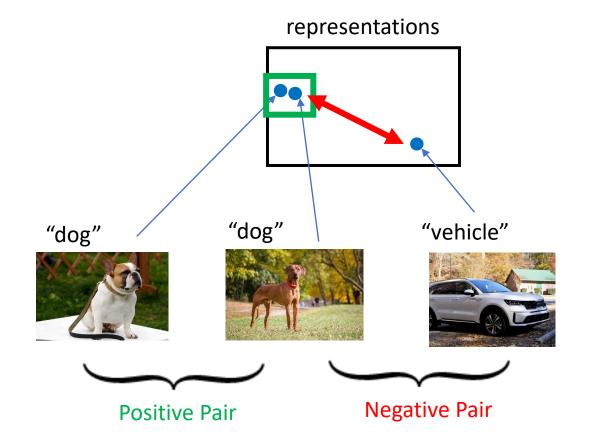
$$-\log \frac{\exp \operatorname{sim}(pos)}{\exp \operatorname{sim}(pos) + \sum \exp \operatorname{sim}(neg)}$$



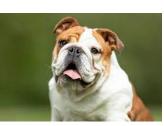
What we can learn if we have all the labels:

Supervised CL (SCL) --- with labels

$$-\log \frac{\exp \operatorname{sim}(pos)}{\exp \operatorname{sim}(pos) + \sum \exp \operatorname{sim}(neg)}$$



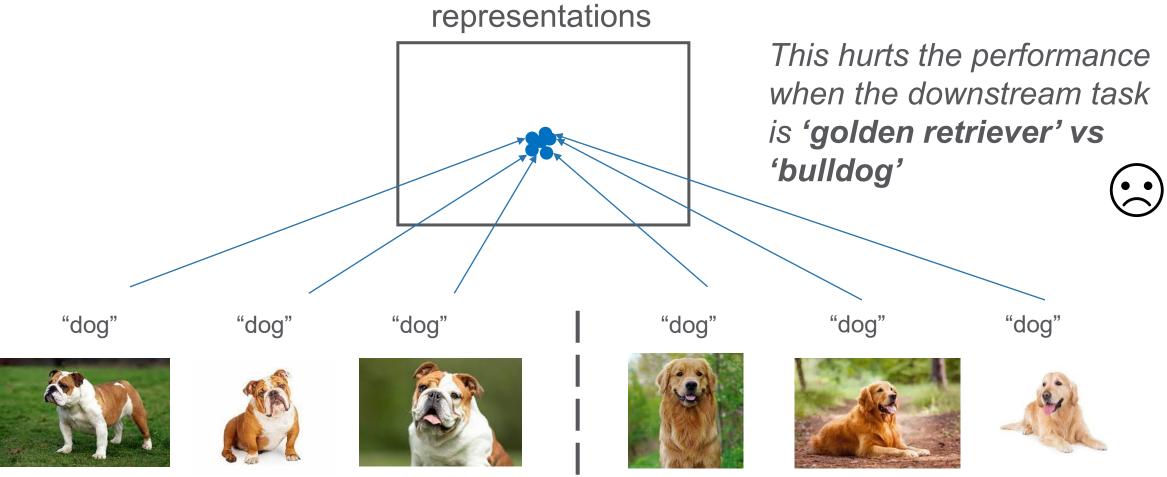
Class Collapse in SCL



Class Collapse in SCL

Class Collapse in SCL representations "dog" "dog" "dog" "dog" "dog" "dog"

Class Collapse in SCL



What we can learn without labels:

Unsupervised CL (UCL) --- without labels

loss function:

 $-\log \frac{\exp \operatorname{sim}(pos)}{\exp \operatorname{sim}(pos) + \sum \exp \operatorname{sim}(neg)}$

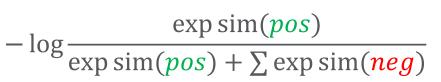
What we can learn without labels:

Unsupervised CL (UCL) --- without labels

 $-\log \frac{\exp \operatorname{sim}(pos)}{\exp \operatorname{sim}(pos) + \sum \exp \operatorname{sim}(neg)}$

What we can learn without labels:

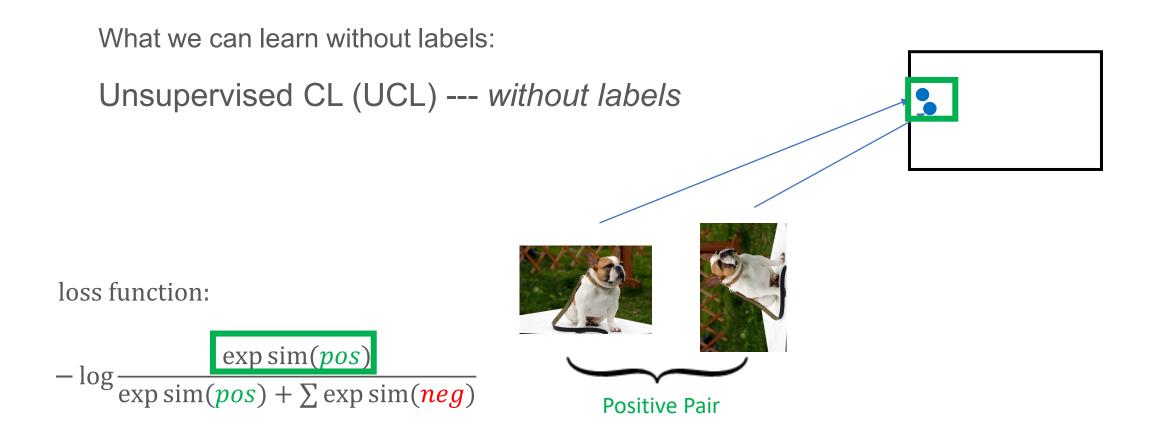
Unsupervised CL (UCL) --- without labels

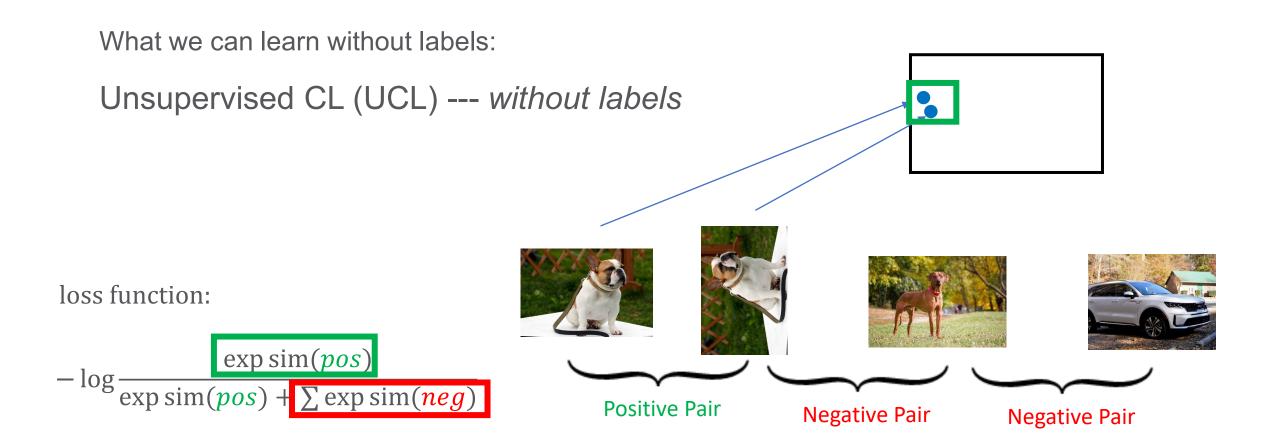


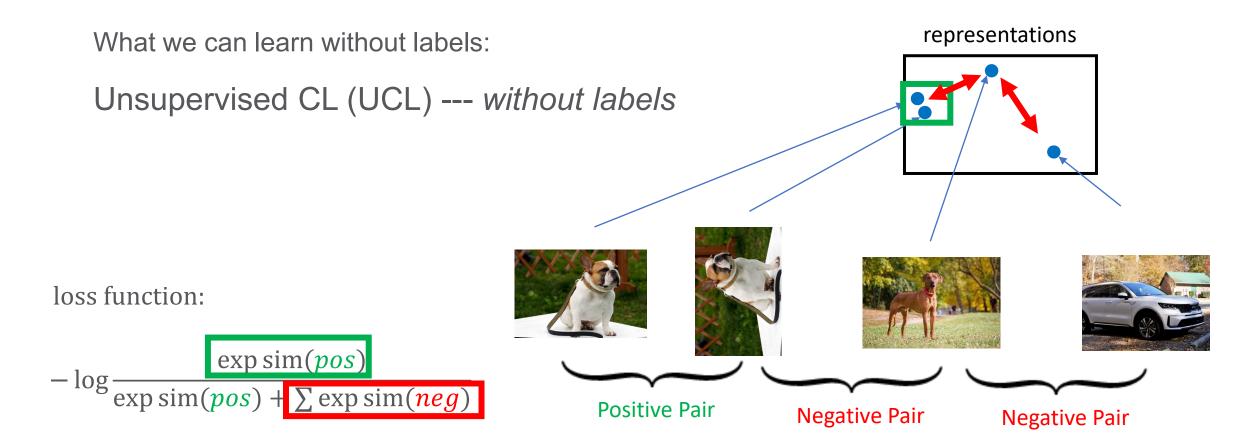
What we can learn without labels:

Unsupervised CL (UCL) --- without labels

$$-\log \frac{\exp \operatorname{sim}(pos)}{\exp \operatorname{sim}(pos) + \sum \exp \operatorname{sim}(neg)}$$







Feature Suppression in UCL

downstream task: *dog* vs *car*

Feature Suppression in UCL

downstream task: *dog* vs *car*

Features:

Feature Suppression in UCL

downstream task: *dog* vs *car*

Features:	dog, moving	dog, <mark>still</mark>	car, still	car, moving	
We want the model to learn:	All the features, or at least dog vs. car.				

Feature Suppression in UCL

downstream task: *dog* vs *car*

Features:	dog, moving	dog, <mark>still</mark>	car, still	car, moving	
We want the model to learn:	All the features, or at least dog vs. car.				
When FS happens the mode learns:	moving	still	still	moving	

Understanding the Failure Modes

(1) Class Collapse in SCL(2) Feature Suppression in UCL

Can we learn better representations?

We need to first understand how and why class collapse and feature suppression happen!

- <u>Do all minimizers exhibit class collapse?</u>
- No.

Do all minimizers exhibit class collapse?

- No.

min training loss \Rightarrow class collapse on <u>training data</u>

• Do all minimizers exhibit class collapse?

- No.

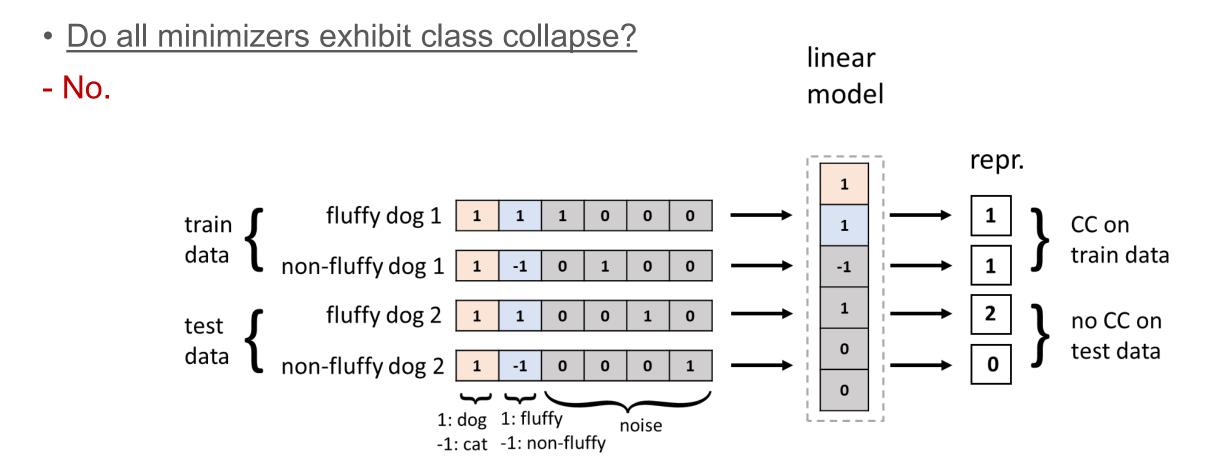
min training loss \Rightarrow class collapse on <u>training data</u> However, min training loss \Rightarrow class collapse on <u>test data (population)</u>

• Do all minimizers exhibit class collapse?

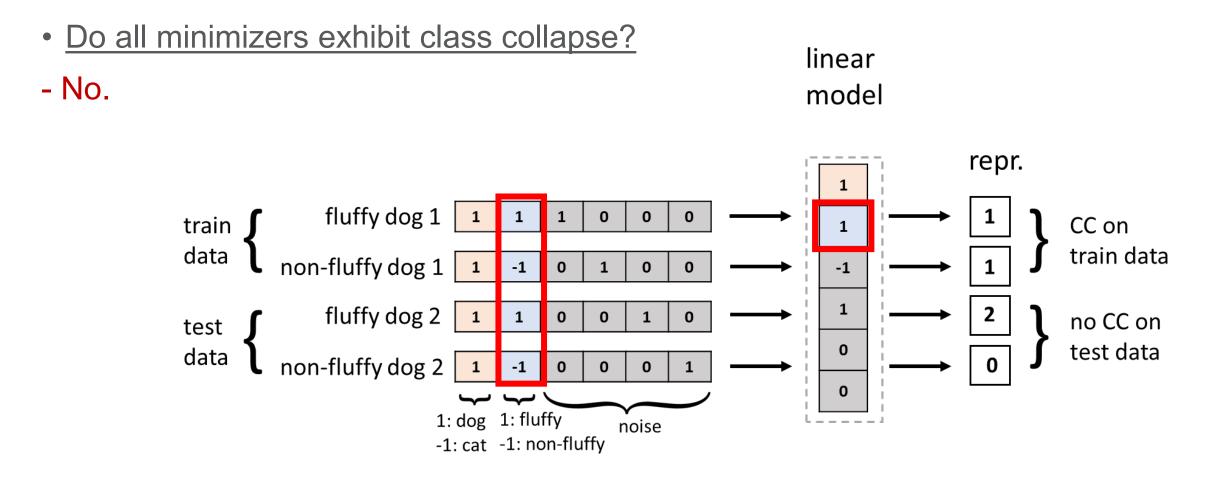
- No.

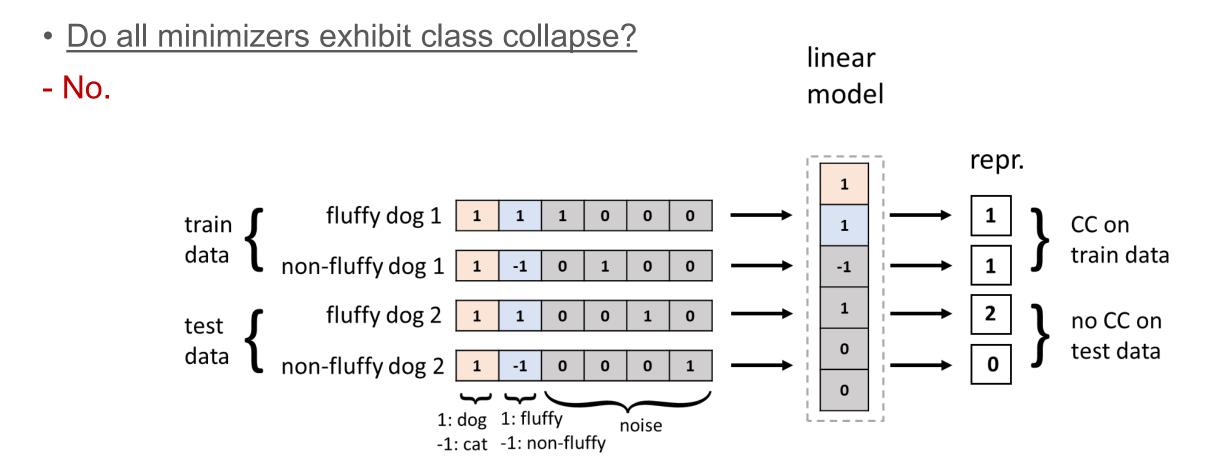
min training loss \Rightarrow class collapse on <u>training data</u> However, min training loss \Rightarrow class collapse on <u>test data (population)</u>

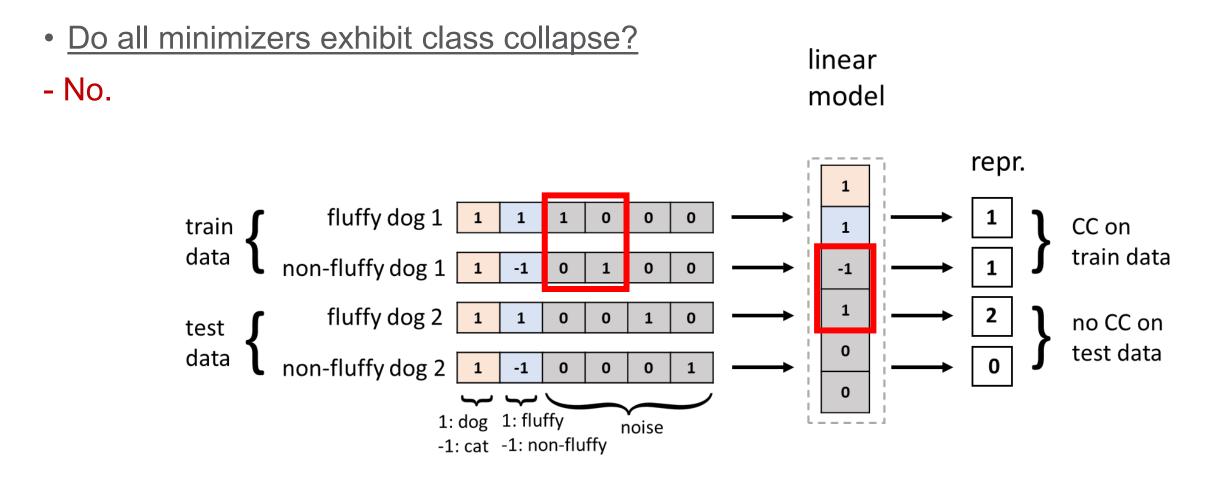
Theorem (informal): \exists a minimizer of the training loss, s.t. it **learns** the **subclass features** and separates subclasses well on the population.

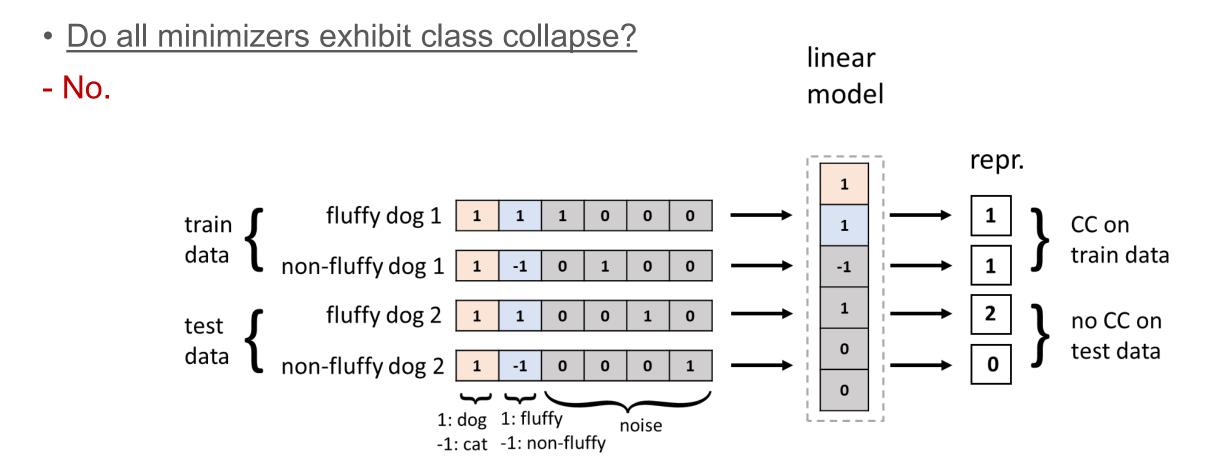


• Do all minimizers exhibit class collapse? linear - No. model repr. fluffy dog 1 1 1 1 0 0 train CC on 1 train data data non-fluffy dog 1 1 -1 0 0 -1 1 0 fluffy dog 2 no CC on 1 1 0 0 1 0 test test data 0 data non-fluffy dog 2 -1 0 0 1: dog 1: fluffy noise -1: cat -1: non-fluffy

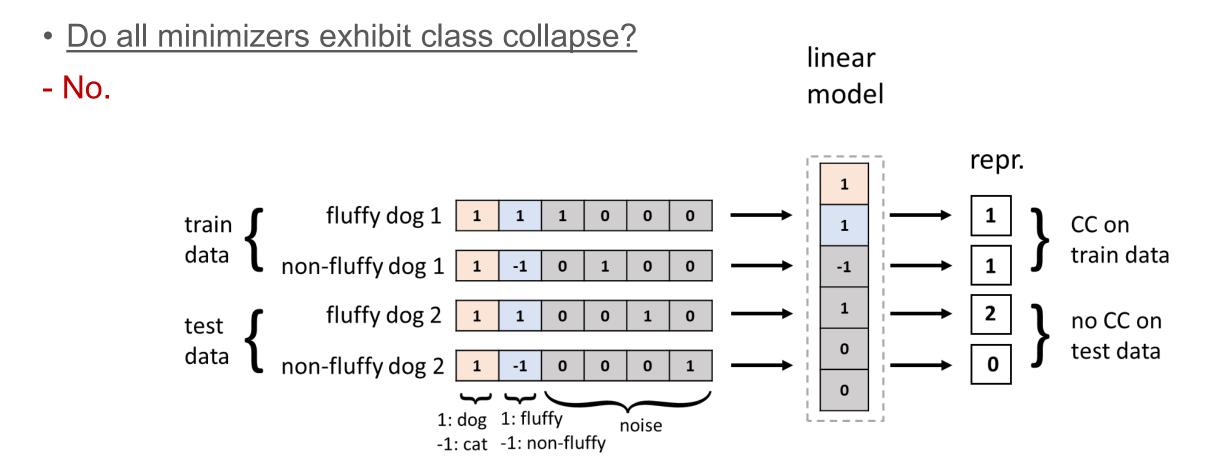


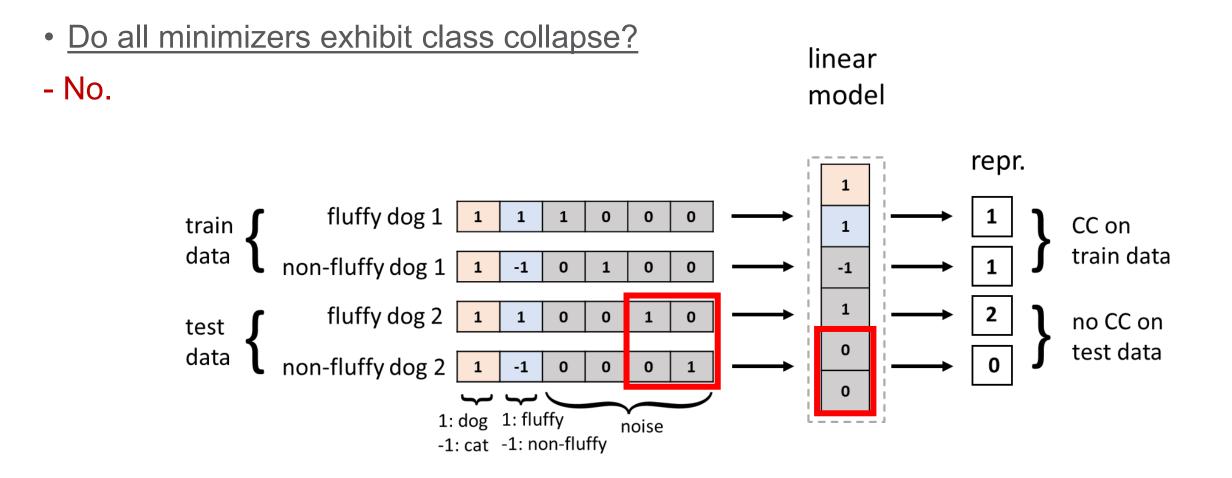


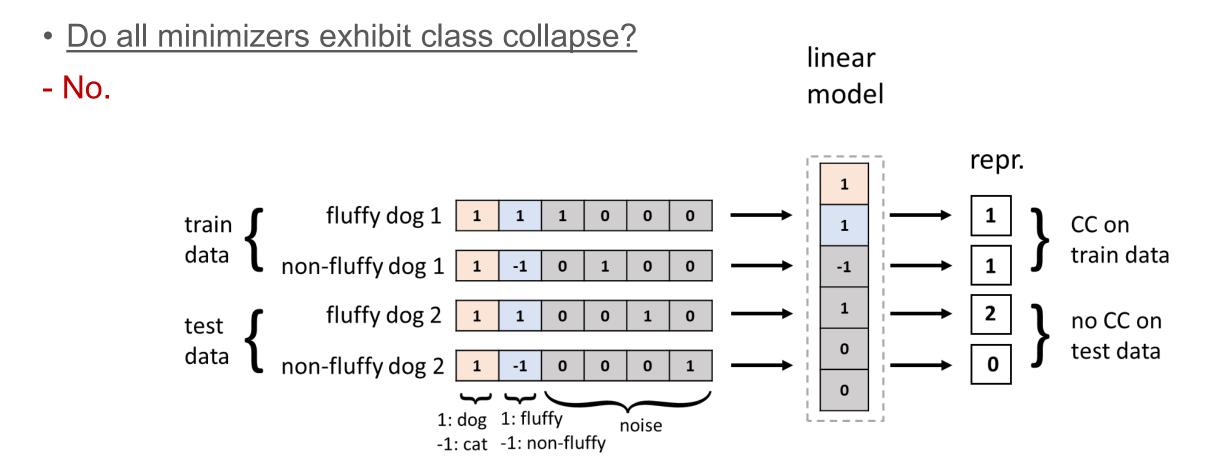




• Do all minimizers exhibit class collapse? linear - No. model repr. fluffy dog 1 1 1 0 1 0 0 train CC on 1 train data data non-fluffy dog 1 -1 0 0 1 0 1 -1 fluffy dog 2 no CC on 0 1 0 1 0 test test data 0 data non-fluffy dog 2 -1 0 0 1: dog 1: fluffy noise -1: cat -1: non-fluffy





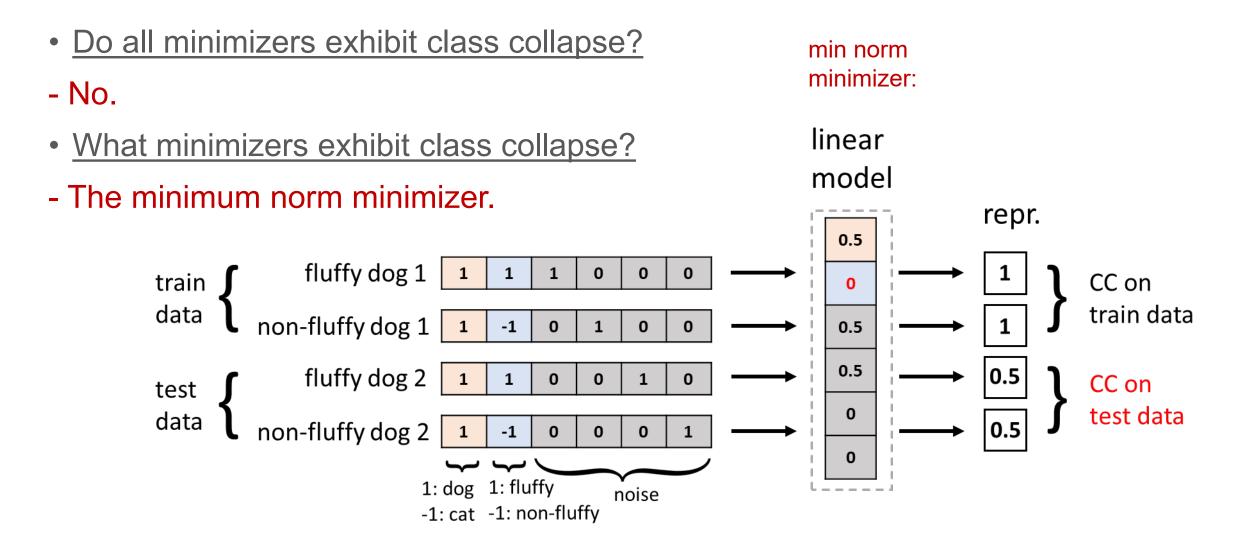


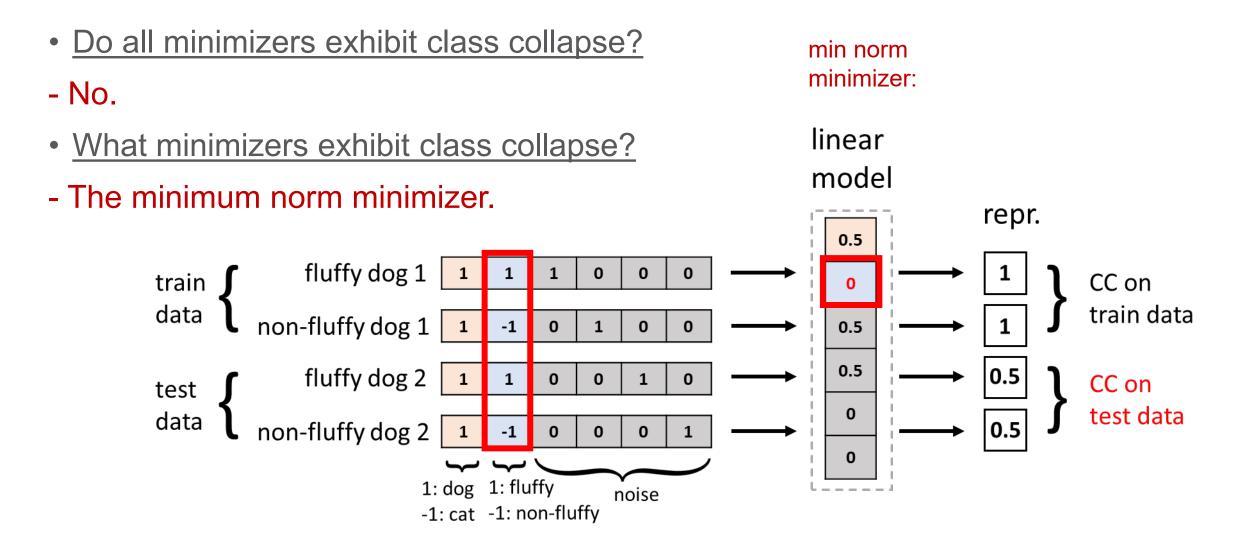
• Do all minimizers exhibit class collapse? linear - No. model repr. fluffy dog 1 1 1 0 1 0 0 train CC on 1 train data data non-fluffy dog 1 -1 0 0 1 0 -1 1 fluffy dog 2 no CC on 0 1 0 1 0 test test data 0 data non-fluffy dog 2 -1 0 0 1: dog 1: fluffy noise -1: cat -1: non-fluffy

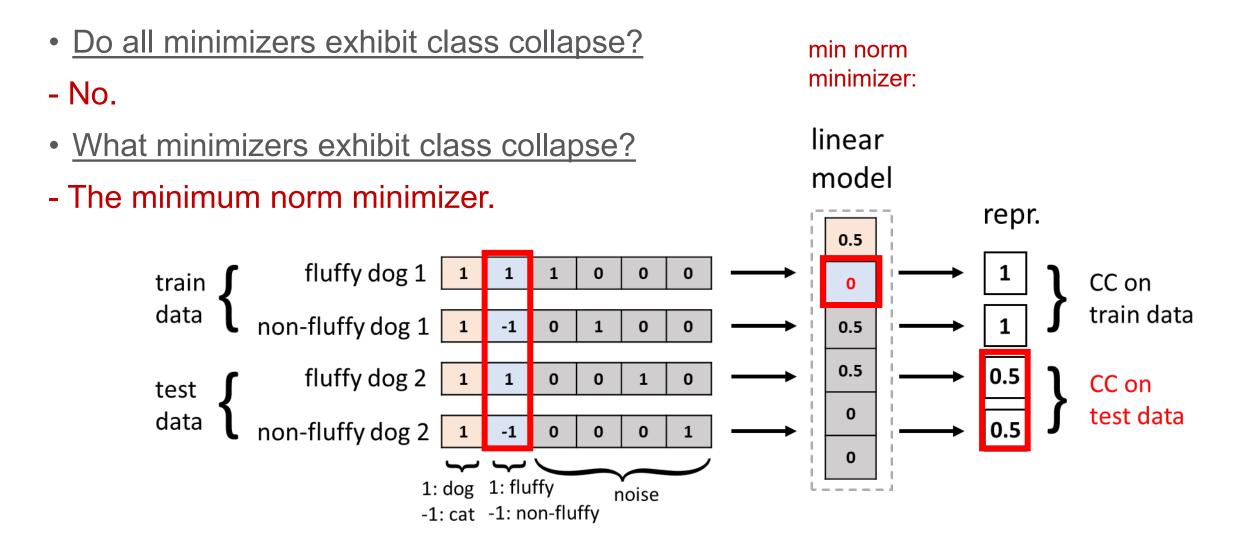
- Do all minimizers exhibit class collapse?
- No.
- What minimizers exhibit class collapse?
- The minimum norm minimizer.

- Do all minimizers exhibit class collapse?
- No.
- What minimizers exhibit class collapse?
- The minimum norm minimizer.

Theorem (informal): The minimum norm minimizer **does not learn** the **subclass features** at all and therefore exhibits class collapse on the population.

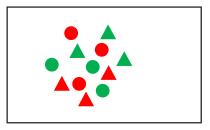






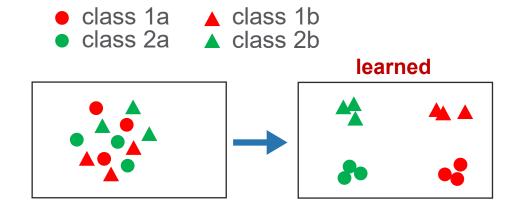
- Do all minimizers exhibit class collapse?
- No.
- What minimizers exhibit class collapse?
- The minimum norm minimizer.
- What if we minimize the loss using (S)GD?
- Subclasses are **learned** and then **unlearned**. (provably)

- Do all minimizers exhibit class collapse?
- No.
- What minimizers exhibit class collapse?
- The minimum norm minimizer.
- What if we minimize the loss using (S)GD?
- Subclasses are **learned** and then **unlearned**. (provably)

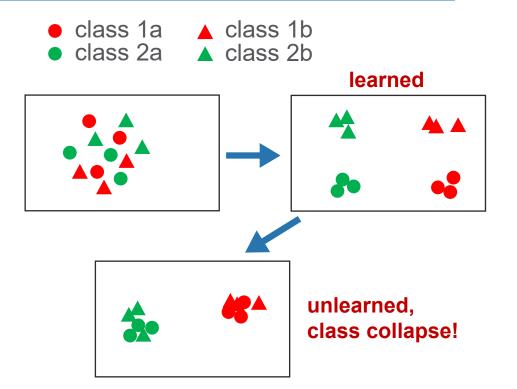


- Do all minimizers exhibit class collapse?
- No.
- What minimizers exhibit class collapse?
- The minimum norm minimizer.
- What if we minimize the loss using (S)GD?
- Subclasses are **learned** and then **unlearned**. (provably)

Theorem (informal): In GD, there exists an epoch where **subclass features** are **learnt** and subclasses are well separated in the representation space.



- Do all minimizers exhibit class collapse?
- No.
- What minimizers exhibit class collapse?
- The minimum norm minimizer.
- What if we minimize the loss using (S)GD?
- Subclasses are **learned** and then **unlearned**. (provably)



Theorem (informal): In GD, there exists an epoch where **subclass features** are **learnt** and subclasses are well separated in the representation space.

- Do all minimizers exhibit class collapse?
- No.
- What minimizers exhibit class collapse?
- The minimum norm minimizer.
- What if we minimize the loss using (S)GD?
- Subclasses are **learned** and then **unlearned**.
- What causes class collapse in (S)GD?

- Do all minimizers exhibit class collapse?
- No.
- What minimizers exhibit class collapse?
- The minimum norm minimizer.
- What if we minimize the loss using (S)GD?
- Subclasses are learned and then unlearned.
- What causes class collapse in (S)GD?

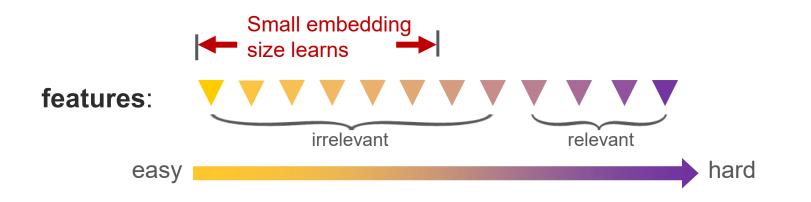
Conjecture: the optimization algorithm's bias toward simple (e.g., min norm) solutions.

Many factors can contribute to feature suppression.

Many factors can contribute to feature suppression.

• Embedding size:

Theorem (informal): With (1) <u>easy-to-learn task-irrelevant features</u> and (2) <u>insufficient</u> <u>embedding size</u>, the **min norm minimizer** exhibits feature suppression.

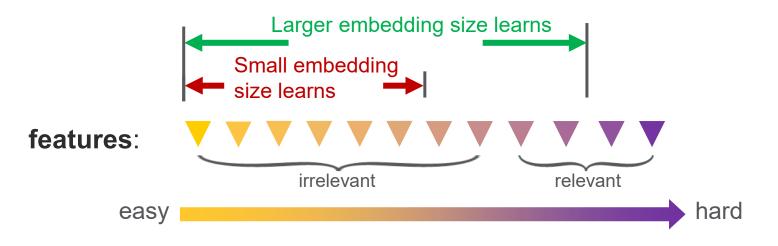


Many factors can contribute to feature suppression.

• Embedding size:

Theorem (informal): With (1) <u>easy-to-learn task-irrelevant features</u> and (2) <u>insufficient</u> <u>embedding size</u>, the **min norm minimizer** exhibits feature suppression.

This suggests **increasing embedding size** as a solution



Many factors can contribute to feature suppression.

• Embedding size:

Theorem (informal): With (1) <u>easy-to-learn task-irrelevant features</u> and (2) <u>insufficient</u> <u>embedding size</u>, the **min norm minimizer** exhibits feature suppression.

This suggests **increasing embedding size** as a solution

Many factors can contribute to feature suppression.

• Embedding size:

Theorem (informal): With (1) <u>easy-to-learn task-irrelevant features</u> and (2) <u>insufficient</u> <u>embedding size</u>, the **min norm minimizer** exhibits feature suppression.

This suggests increasing embedding size as a solution (even for neural networks)

Embedding size	Downstream accuracy
4	86.73
64	96.82
128	97.65

E.g., larger embedding size leads to better downstream performance on CIFAR10-RandBit

Many factors can contribute to feature suppression.

• Data augmentation:

Theorem (informal): With (1) <u>highly diverse irrelevant features</u> and (2) <u>imperfect data</u> <u>augmentation</u>, the **min norm minimizer** exhibits feature suppression, even with arbitrarily large embedding size.

Many factors can contribute to feature suppression.

• Data augmentation:

Theorem (informal): With (1) <u>highly diverse irrelevant features</u> and (2) <u>imperfect data</u> <u>augmentation</u>, the **min norm minimizer** exhibits feature suppression, even with arbitrarily large embedding size.

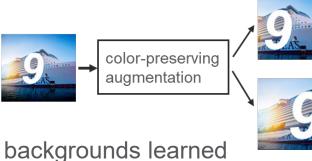
downstream task: digit classification; but images have distinct backgrounds

Many factors can contribute to feature suppression.

Data augmentation:

Theorem (informal): With (1) <u>highly diverse irrelevant features</u> and (2) <u>imperfect data</u> augmentation, the min norm minimizer exhibits feature suppression, even with arbitrarily large embedding size.

downstream task: **digit** classification; but images have **distinct backgrounds**



digits learned

Joint loss = β * Supervised CL loss + $(1 - \beta)$ * Unsupervised CL loss

We provide the first theoretical justification for the joint loss.

Theorem (informal): The joint loss can avoid both class collapse and feature suppression.

Joint loss = β * Supervised CL loss + $(1 - \beta)$ * Unsupervised CL loss prioritize class features + $(1 - \beta)$ * Unsupervised CL loss encourage learning of other features

We provide the *first theoretical justification* for the joint loss.

Theorem (informal): The joint loss can avoid both class collapse and feature suppression.

Joint loss = β * Supervised CL loss + $(1 - \beta)$ * Unsupervised CL loss prioritize class features + $(1 - \beta)$ * Unsupervised CL loss encourage learning of other features

We provide the *first theoretical justification* for the joint loss.

Theorem (informal): The joint loss can avoid both class collapse and feature suppression.

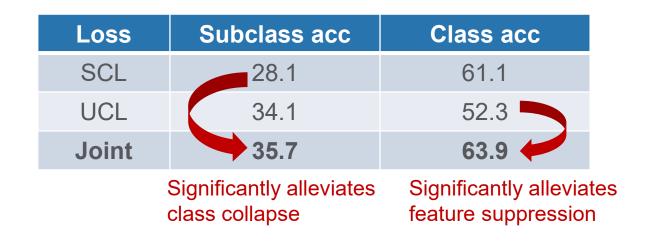
Loss	Subclass acc	Class acc
SCL	28.1	61.1
UCL	34.1	52.3
Joint	35.7	63.9

E.g., joint loss leads to better class and subclass accuracies on CIFAR100-RandBit

Joint loss = β * Supervised CL loss + $(1 - \beta)$ * Unsupervised CL loss prioritize class features + $(1 - \beta)$ * Unsupervised CL loss encourage learning of other features

We provide the *first theoretical justification* for the joint loss.

Theorem (informal): The joint loss can avoid both class collapse and feature suppression.



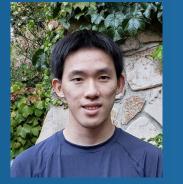
E.g., joint loss leads to better class and subclass accuracies on CIFAR100-RandBit

Thank You

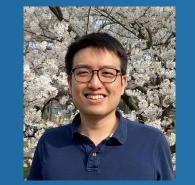
Come to our poster for more details! Poster location & time: *Exhibit Hall 1 #218, Thu 27 Jul*

Yihao Xue

Siddharth Joshi



Eric Gan



Pin-Yu Chen

Baharan Mirzasoleiman