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Sequential learning with partial feedback

• An agent sequentially makes decisions to maximize cumulative reward.

• Challenge: only observes feedback of her chosen decision, but does not
observe feedback of other unchosen decisions.

• Trade-off between exploration and exploitation:
• needs to try different decisions to learn the environment.
• wants to focus on good decisions and avoid bad decisions to

maximize incurred reward.
• We develop a general theory encompassing bandit problems, reinforcement

learning, and beyond.
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Frequentist vs Bayesian

Frequentist:

• Example: Upper Confidence
bound (UCB).

• Pros: does not require prior
knowledge of environment;
computationally efficient.

• Cons: heavily relies on
case-by-case design (e.g., reward
estimators) and special
structures.

Bayesian:

• Example: Thompson Sampling
(TS) with a fixed, pre-specified
prior.

• Pros: offers optimality and
generality if prior is known.

• Cons: knowledge of prior not
accessible in complex settings;
maintaining posterior
computationally expensive.

Frequentist approach requires less information, but is more bottom-up;
Bayesian approach is more top-down, but requires stronger assumptions.

2 / 7



Frequentist vs Bayesian

Frequentist:
• Example: Upper Confidence

bound (UCB).

• Pros: does not require prior
knowledge of environment;
computationally efficient.

• Cons: heavily relies on
case-by-case design (e.g., reward
estimators) and special
structures.

Bayesian:

• Example: Thompson Sampling
(TS) with a fixed, pre-specified
prior.

• Pros: offers optimality and
generality if prior is known.

• Cons: knowledge of prior not
accessible in complex settings;
maintaining posterior
computationally expensive.

Frequentist approach requires less information, but is more bottom-up;
Bayesian approach is more top-down, but requires stronger assumptions.

2 / 7



Frequentist vs Bayesian

Frequentist:
• Example: Upper Confidence

bound (UCB).
• Pros: does not require prior

knowledge of environment;
computationally efficient.

• Cons: heavily relies on
case-by-case design (e.g., reward
estimators) and special
structures.

Bayesian:

• Example: Thompson Sampling
(TS) with a fixed, pre-specified
prior.

• Pros: offers optimality and
generality if prior is known.

• Cons: knowledge of prior not
accessible in complex settings;
maintaining posterior
computationally expensive.

Frequentist approach requires less information, but is more bottom-up;
Bayesian approach is more top-down, but requires stronger assumptions.

2 / 7



Frequentist vs Bayesian

Frequentist:
• Example: Upper Confidence

bound (UCB).
• Pros: does not require prior

knowledge of environment;
computationally efficient.

• Cons: heavily relies on
case-by-case design (e.g., reward
estimators) and special
structures.

Bayesian:

• Example: Thompson Sampling
(TS) with a fixed, pre-specified
prior.

• Pros: offers optimality and
generality if prior is known.

• Cons: knowledge of prior not
accessible in complex settings;
maintaining posterior
computationally expensive.

Frequentist approach requires less information, but is more bottom-up;
Bayesian approach is more top-down, but requires stronger assumptions.

2 / 7



Frequentist vs Bayesian

Frequentist:
• Example: Upper Confidence

bound (UCB).
• Pros: does not require prior

knowledge of environment;
computationally efficient.

• Cons: heavily relies on
case-by-case design (e.g., reward
estimators) and special
structures.

Bayesian:
• Example: Thompson Sampling

(TS) with a fixed, pre-specified
prior.

• Pros: offers optimality and
generality if prior is known.

• Cons: knowledge of prior not
accessible in complex settings;
maintaining posterior
computationally expensive.

Frequentist approach requires less information, but is more bottom-up;
Bayesian approach is more top-down, but requires stronger assumptions.

2 / 7



Frequentist vs Bayesian

Frequentist:
• Example: Upper Confidence

bound (UCB).
• Pros: does not require prior

knowledge of environment;
computationally efficient.

• Cons: heavily relies on
case-by-case design (e.g., reward
estimators) and special
structures.

Bayesian:
• Example: Thompson Sampling

(TS) with a fixed, pre-specified
prior.

• Pros: offers optimality and
generality if prior is known.

• Cons: knowledge of prior not
accessible in complex settings;
maintaining posterior
computationally expensive.

Frequentist approach requires less information, but is more bottom-up;
Bayesian approach is more top-down, but requires stronger assumptions.

2 / 7



Frequentist vs Bayesian

Frequentist:
• Example: Upper Confidence

bound (UCB).
• Pros: does not require prior

knowledge of environment;
computationally efficient.

• Cons: heavily relies on
case-by-case design (e.g., reward
estimators) and special
structures.

Bayesian:
• Example: Thompson Sampling

(TS) with a fixed, pre-specified
prior.

• Pros: offers optimality and
generality if prior is known.

• Cons: knowledge of prior not
accessible in complex settings;
maintaining posterior
computationally expensive.

Frequentist approach requires less information, but is more bottom-up;
Bayesian approach is more top-down, but requires stronger assumptions.

2 / 7



Frequentist vs Bayesian

Frequentist:
• Example: Upper Confidence

bound (UCB).
• Pros: does not require prior

knowledge of environment;
computationally efficient.

• Cons: heavily relies on
case-by-case design (e.g., reward
estimators) and special
structures.

Bayesian:
• Example: Thompson Sampling

(TS) with a fixed, pre-specified
prior.

• Pros: offers optimality and
generality if prior is known.

• Cons: knowledge of prior not
accessible in complex settings;
maintaining posterior
computationally expensive.

Frequentist approach requires less information, but is more bottom-up;
Bayesian approach is more top-down, but requires stronger assumptions.

2 / 7



Frequentist vs Bayesian

Frequentist:
• Example: Upper Confidence

bound (UCB).
• Pros: does not require prior

knowledge of environment;
computationally efficient.

• Cons: heavily relies on
case-by-case design (e.g., reward
estimators) and special
structures.

Bayesian:
• Example: Thompson Sampling

(TS) with a fixed, pre-specified
prior.

• Pros: offers optimality and
generality if prior is known.

• Cons: knowledge of prior not
accessible in complex settings;
maintaining posterior
computationally expensive.

Frequentist approach requires less information, but is more bottom-up;
Bayesian approach is more top-down, but requires stronger assumptions.

2 / 7



Main research question

Can we develop principled Bayesian-type algorithms, that are
prior-free, computationally efficient, and work well in both
stochastic and adversarial/non-stationary environments?
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Contributions: approach

A general theory that creates algorithmic beliefs to simulate worst-case
environment and uses posteriors to make decisions

⇒ Synergizing Frequentist and Bayesian approaches
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fixed prior. Automatically adapts to adversarial environments.

• The first approach that allows Bayesian-type algorithms to operate
without prior assumptions and be applicable in adversarial settings.
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• The first approach that allows Bayesian-type algorithms to operate
without prior assumptions and be applicable in adversarial settings.

• Uses Bayesian posteriors for randomized estimation and decision making.
• More principled and precise than existing frequentist algorithms.

• Introduces Algorithmic Information Ratio (AIR) as an optimization
objective to create “algorithmic beliefs”, as well as a complexity measure
to bound the frequentist regret of any algorithm.

• Develop a “principle of maximal AIR” to derive novel learning
algorithms and unify existing ones.
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Contributions: applications

• In Multi-armed bandits (MAB), our proposed Adaptive Posterior Sampling
(APS) algorithm achieves “best-of-all-worlds” empirical performance in
stochastic, adversarial, and non-stationary environments!
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• We also provide theoretical guarantees and insights to linear bandits,
bandit convex optimization, and reinforcement learning.
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Numerical evidence: changing environment

• Non-stationary MAB: generate a 4-armed bandit problem with the
mean-reward structure showed in the left figure:

• APS achieves best performance, while TS fails in this non-stationary
environment.

6 / 7



Numerical evidence: changing environment

• Non-stationary MAB: generate the ”sine curve” environment, track the
selected arms and the best arms throughout the process.

• APS is highly responsive to changes in the best arm, whereas TS is
relatively sluggish in this regard!

• Creating new algorithmic beliefs has the potential to be a game changer.
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Thanks!


