Rethinking Warm-Starts with Predictions: Learning Predictions Close to Sets of Optimal Solutions for Faster L-/L^{¹/L¹}-Convex Function Minimization

Shinsaku Sakaue, Taihei Oki

The University of Tokyo

Warm-Starting Algorithms with Predictions

Warm-start algorithms with predictions learned from past instances.

Time complexity is typically written as

prediction error

 $O(\text{single-step time} \times ||p^* - \hat{p}||)$

Weighted perfect bipartite matching (Dinitz et al. '21, Chen et al. '22, Khodak et al. '22, S. & Oki '22)

- Single step is done by the $O(m\sqrt{n})$ -time Hopcroft—Karp algorithm
- p^* is an optimal dual solution
- \hat{p} is a dual prediction (learned from past p^*)

If $\hat{p} \approx p^*$, faster than the O(mn)-time Hungarian method \cong

Warm-Starting Algorithms with Predictions

Warm-start algorithms with predictions learned from past instances.

Time complexity is typically written as

prediction error

 $O(\text{single-step time} \times ||p^* - \hat{p}||)$

Weighted perfect bipartite matching (Dinitz et al. '21, Chen et al. '22, Khodak et al. '22, S. & Oki '22)

- Single step is done by the $O(m\sqrt{n})$ -time Hopcroft—Karp algorithm
- p^* is an optimal dual solution
- \hat{p} is a dual prediction (learned from past p^*)

If $\hat{p} \approx p^*$, faster than the O(mn)-time Hungarian method Θ

...assuming $\|p^* - \widehat{p}\|$ is well-defined (or optimal p^* is unique) \ref{p}

Dual LP of weighted perfect bipartite matching

minimize $\sum_{i \in L} p_i - \sum_{i \in R} p_j$ subject to $p_i - p_j \ge w_{ij}$ for all edges (i, j)

|L| = |R|

Dual LP of weighted perfect bipartite matching

minimize $\sum_{i \in L} p_i - \sum_{i \in R} p_j$ subject to $p_i - p_j \ge w_{ij}$ for all edges (i, j)

p and $p + \alpha \mathbf{1}$ have the same objective value and l.h.s. of the constraints:

- $\sum_{i \in L} (p_i + \alpha) \sum_{i \in R} (p_j + \alpha) = \sum_{i \in L} p_i \sum_{i \in R} p_j$
- $(p_i + \alpha) (p_j + \alpha) = p_i p_j$

If p^* is optimal, so is $p^* + \alpha \mathbf{1}$ for all $\alpha \in \mathbb{R}$. \Rightarrow Infinitely many optimal solutions exist!

Need to predetermine p^* uniquely by some tie-breaking rule.

However, the $\|p^* - \hat{p}\|$ -dependent bound becomes poor if p^* is far from \hat{p} 😢

Need to predetermine p^* uniquely by some tie-breaking rule. However, the $||p^* - \hat{p}||$ -dependent bound becomes poor if p^* is far from \hat{p} **W**

Similar issues occur in more general $L-/L^{\natural}$ -convex minimization. (S. & Oki '22)

including bipartite matching, matroid intersection, min-cost flow, etc.

Our Idea: Learn Predictions Close to Sets of Optimal Solutions

Learn \hat{p} to minimize $\bar{\mu}(\hat{p}) \coloneqq \min\{\|p^* - \hat{p}\|_{\infty}^{\pm} \mid p^* \in \operatorname{conv}(\operatorname{argmin} g)\}.$

distance between \hat{p} and the set of optimal solutions

based on a DCA result (Murota & Shioura '14)

✓ L-/L⁴-convex min. alg. takes $O(\text{single-step time} \times \overline{\mu}(\hat{p}))$ time.

✓ We can provably learn \hat{p} to minimize $\bar{\mu}(\hat{p})$ approximately in polynomial time.

