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Warm-Starting Algorithms with Predictions
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Warm-start algorithms with predictions learned from past instances.
Time complexity is typically written as

! single-step time × #∗ − #̂

• Single step is done by the !(' ()-time Hopcroft—Karp algorithm
• #∗ is an optimal dual solution
• #̂ is a dual prediction (learned from past #∗)

If #̂ ≈ #∗, faster than the !('()-time Hungarian method !

Weighted perfect bipartite matching (Dinitz et al. ’21, Chen et al. ’22, Khodak et al. ’22 , S. & Oki ’22)

prediction error



Warm-Starting Algorithms with Predictions

3

…assuming +∗ − ,+ is well-defined (or optimal +∗ is unique) "

If #̂ ≈ #∗, faster than the !('()-time Hungarian method !

Weighted perfect bipartite matching

Time complexity is typically written as

(Dinitz et al. ’21, Chen et al. ’22, Khodak et al. ’22 , S. & Oki ’22)

! single-step time × #∗ − #̂

Warm-start algorithms with predictions learned from past instances.

prediction error

• Single step is done by the !(' ()-time Hopcroft—Karp algorithm
• #∗ is an optimal dual solution
• #̂ is a dual prediction (learned from past #∗)



Multiple Optimal Solutions Always Exist! 
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Dual LP of weighted perfect bipartite matching

minimize ∑"∈% #" − ∑"∈& ##

subject to #" − ## ≥ /"# for all edges (F, H)
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# and # + JK have the same objective value and 
l.h.s. of the constraints: 
• ∑"∈%(#" + J) − ∑"∈& ## + J = ∑"∈% #" − ∑"∈& ##
• #" + J − ## + J = #" − ##

#" ##

If #∗ is optimal, so is #∗ + JK for all J ∈ ℝ.
⇒ Infinitely many optimal solutions exist! #

- = |.|

Dual LP of weighted perfect bipartite matching

minimize ∑"∈% #" − ∑"∈& ##

subject to #" − ## ≥ /"# for all edges (F, H)



Multiple Optimal Solutions Always Exist! 
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Need to predetermine #∗ uniquely by some tie-breaking rule.
However, the #∗ − #̂ -dependent bound becomes poor if #∗ is far from #̂$
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Need to predetermine #∗ uniquely by some tie-breaking rule.
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However, the #∗ − #̂ -dependent bound becomes poor if #∗ is far from #̂$

Similar issues occur in more general L-/L♮-convex minimization. (S. & Oki ’22)

including bipartite matching, matroid intersection, min-cost flow, etc.



Our Idea: Learn Predictions Close to Sets of Optimal Solutions
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Learn #̂ to minimize Q̅ #̂ ≔ min #∗ − #̂ '
± #∗ ∈ conv(argmin T) .
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distance between "̂ and the set of optimal solutions

✔ L-/L♮-convex min. alg. takes !(single−step time × Q̅ #̂ ) time.
✔ We can provably learn #̂ to minimize Q̅ #̂ approximately in polynomial time.

based on a DCA result 
(Murota & Shioura ’14)


