Rethinking Warm-Starts with Predictions: Learning Predictions Close to Sets of Optimal Solutions for Faster L-/L $\mathrm{L}^{\text {h }}$-Convex Function Minimization

Shinsaku Sakaue, Taihei Oki

The University of Tokyo

Warm-Starting Algorithms with Predictions

Warm-start algorithms with predictions learned from past instances.
Time complexity is typically written as
prediction error

$$
O\left(\text { single-step time } \times\left\|p^{*}-\hat{p}\right\|\right)
$$

Weighted perfect bipartite matching (Dinitz et al. '21, Chen et al. '22, Khodak et al. '22, S. \& Oki '22)

- Single step is done by the $O(m \sqrt{n})$-time Hopcroft—Karp algorithm
- p^{*} is an optimal dual solution
- \hat{p} is a dual prediction (learned from past p^{*})

If $\hat{p} \approx p^{*}$, faster than the $O(m n)$-time Hungarian method (0)

Warm-Starting Algorithms with Predictions

Warm-start algorithms with predictions learned from past instances.
Time complexity is typically written as
prediction error

$$
O\left(\text { single-step time } \times\left\|p^{*}-\hat{p}\right\|\right)
$$

Weighted perfect bipartite matching (Dinitz et al. '21, Chen et al. '22, Khodak et al. '22, S. \& Oki '22)

- Single step is done by the $O(m \sqrt{n})$-time Hopcroft—Karp algorithm
- p^{*} is an optimal dual solution
- \hat{p} is a dual prediction (learned from past p^{*})

If $\hat{p} \approx p^{*}$, faster than the $O(m n)$-time Hungarian method (0)
...assuming $\left\|p^{*}-\widehat{p}\right\|$ is well-defined (or optimal p^{*} is unique)

Multiple Optimal Solutions Always Exist!

Dual LP of weighted perfect bipartite matching

minimize $\sum_{i \in L} p_{i}-\sum_{i \in R} p_{j}$
subject to $p_{i}-p_{j} \geq w_{i j}$ for all edges (i, j)

$$
|L|=|R|
$$

Multiple Optimal Solutions Always Exist!

Dual LP of weighted perfect bipartite matching

minimize $\sum_{i \in L} p_{i}-\sum_{i \in R} p_{j}$
subject to $p_{i}-p_{j} \geq w_{i j}$ for all edges (i, j)
p and $p+\alpha 1$ have the same objective value and l.h.s. of the constraints:

- $\sum_{i \in L}\left(p_{i}+\alpha\right)-\sum_{i \in R}\left(p_{j}+\alpha\right)=\sum_{i \in L} p_{i}-\sum_{i \in R} p_{j}$
- $\left(p_{i}+\alpha\right)-\left(p_{j}+\alpha\right)=p_{i}-p_{j}$

If p^{*} is optimal, so is $p^{*}+\alpha 1$ for all $\alpha \in \mathbb{R}$.
\Rightarrow Infinitely many optimal solutions exist! Sed

Multiple Optimal Solutions Always Exist!

Need to predetermine p^{*} uniquely by some tie-breaking rule.
However, the $\left\|p^{*}-\hat{p}\right\|$-dependent bound becomes poor if p^{*} is far from \hat{p}

Multiple Optimal Solutions Always Exist!

Need to predetermine p^{*} uniquely by some tie-breaking rule.
However, the $\left\|p^{*}-\hat{p}\right\|$-dependent bound becomes poor if p^{*} is far from \hat{p}
Similar issues occur in more general L-/L' -convex minimization. (S. \& Oki '22) including bipartite matching, matroid intersection, min-cost flow, etc.

Our Idea: Learn Predictions Close to Sets of Optimal Solutions

Learn \hat{p} to minimize $\bar{\mu}(\hat{p}):=\min \left\{\left\|p^{*}-\hat{p}\right\|_{\infty}^{ \pm} \mid p^{*} \in \operatorname{conv}(\operatorname{argmin} g)\right\}$.
distance between \hat{p} and the set of optimal solutions
\checkmark L-/L L^{\natural}-convex min. alg. takes O (single-step time $\times \bar{\mu}(\hat{p})$) time.
based on a DCA result (Murota \& Shioura '14) \checkmark We can provably learn \hat{p} to minimize $\bar{\mu}(\hat{p})$ approximately in polynomial time.

